OSM 6 User's manual 3085-503

TABLE OFPCONTENTS

page

1. Introduction 4
1.1 Installation layout 5
2. Technical characteristics 7
2.1 General characteristics 7
2.2 Electrical characteristics 7
2.3 Keyboard characteristics 7
2.3.1 Numerical keyboard 8
2.3.2 Lane control keyboard 8
2.3.3 Keyboard for the introduction of race parameters 8
2.3.4 Correction keyboard 9
2.3.5 Printout keyboard 9
2.4 Printer characteristics 10
2.5 Display characteristics 11
2.6 Input - output characteristics 12
2.7 Functional characteristics 13
2.7.1 Initialisation of the OSM 6 13
2.7.2 Race definition 13
2.7.3 Timing 15
2.7.4 Preliminary corrections 16
2.7.5 Later corrections 16
2.7.6 Display, printing of the results 17
2.8 Plug-in module characteristics 18
2.9 Equipment layout 19
page
3. Commissioning \& maintenance of the OSM 6 20
3.1 Putting into operation 20
3.2 Connection of the OSM 6 22
3.3 Maintenance 26
3.4 Trouble-shooting 27
4. Utilisation 29
5. Use of the OSM 6 31
5.1 Connection of the OSM 6 31
5.2 Insertion of the type of scoreboard 32
5.3 Insertion of the number of lanes 33
5.4 Insertion of the time base 33
5.5 Insertion of the date 34
5.6 Insertion of the time of day 35
5.7 Synchronisation of the time of day 35
6. Definition of the race 36
6.1 Choice of program 36
6.2 Introduction of arming time 37
6.3 Introduction of the event number, heat number 38
6.4 Introduction of the number of laps 40
7. Timing 41
7.1 Timing with the AUTO program 41
page
8. Display of the results 48
8.1 Display on the built-in printer 48
8.2 Control of the display on the board 51
8.3 Display on a 1 line board 54
8.4 Display on a multi-line board 55
8.5 Display on the board 55
9. Event examples 56
9.1 Example with AUTO FD program 56
9.2 Example with MANUAL program 58
10. Correction a posteriori 61
10.1 Insertion of a time 63
10.2 Modification of a time 66
10.3 Erasing of a time 69
11. Correction of fortuitious events 70
11.1 False start of an event 70
11.2 False start as the apparatus is not ready 72
11.3 There is no START IMPULSES 75
11.4 There are several START IMPULSES 75
11.5 NEXT START function before the end of the event 75

1. INTRODUCTION

The OSM 6 is a timing computer specially adapted to swimming competitions.

It has been designed for:

- $25 \mathrm{~m}, 50 \mathrm{~m}$ pools, and others
- pools equiped with a maximum of 10 lanes
- individual races (all swimming events)
- relay races with false start control

The possibility of introducing plug-in program modules enables the OSM 6 to:

- increase its functions
- be used for new applications

The OSM 6 comes in a black portable case composed of:

- one control panel with connection plugs
- one board with 39 function keys
- an LCD display with 16 characters
- an electrosensitive printer with 21 characters per line
- an electronic circuit with two micro-processors
- an optional plug-in module

The choice of the peripherals enables the OSM 6 to be used in many fields, from local competitions (clubs, schools), to Olympic Games.

The OSM 6 features 3 timing programs

AUTO Automatic timing for individual and relay, races, without false relay control.

- arrival times given through touch pad
- back-up system possible with one push button per lane.

AUTO FD Automatic timing for relay races, with false start control.
 - arrival times given through touch pad
 - backup system possible with one push button per lane
 - starting time given through starting blocks

MANUAL Manual timing for individual and relay races, without false relay control.

- arrival times given by 3 push buttons per lane

1.1

 Installation layoutThe OSM 6 is the heart of a timing installation composed of :

- one OSM 6
- watertight wiring system (HARNESS)
- 1 starting system
- 1 arrival detection system

At any time an installation can be completed with:

- timing peripherals
- starting blocks, for false relay control 5
- acoustic starting signal o
- data handling peripherals
- 1 line or multiline scorebaord
- video display (information to the speaker) 8
- diffusion of information to national TV network 9
- data handling computer for preparation of star- 10 ting lists

2. Technical characteristics
2.1 General characteristics

See data sheet E 0013-0140
2.2 Electrical characteristics

See data sheet E 0013-0140
Other characteristics:
Power supply
Built-in display shows if voltage is too low
2.3 Keyboard characteristics

Composed of:
39 keys, divided into 5 groups and protected against water droplets.

2.3.1 Numerical Keyboard

Figures from 0 to 9: choice of lanes or introduction of values

ALL	: same as pressing the together
START	: selection of the start

2.3.2 Lane control keyboard

NOT USED : lane not used for one heat
LANE ON : manual arming of the LANE or of the START
LANE OFF : manual disarming of the LANE or the START
TEST : manual arrival impulse on one lane, on all the lanes simultaneously, or start impuise

While introducing the lane number on the numerical board, all the lane keys must be pressed down.
2.3.3 Keyboard for the introduction of race parameters

PROG : program selection
ARM TIME, : automatic lane arming selection
EVENT HEAT : input of a race number, heat number
LAP : input of number of laps (length of the race)

Correction keyboard	
INS	: insertion of a missing time
MOD	: modification of a recorded time
ERASE	: erasing of an erroneous recorded time
	: on the display, shifting the cursor one character to the left. The character blinks to signal the position of the cursor.
---	: cursor to the right
LAST	: to display the last section
NEXT	: to display the next section
ESC	: to cancel a function already started
ENTER	: to execute a function already started
2.3.5 P	Printout keyboard
PRINT	: printing of the information on the built-in printer
SCB	: display of the information on the scoreboard
DISP	: display of the information on the built-in display unit
LINE FEED	: printer paper feed
BACK UP	: selection of results with backup time
RSLT	: selection of final results
CLEAR	: holding a running distribution erasing the scorebaord

2.4 Printer ch	acteristics
Type	: electrosensitive
Printing	: matrix 5×7 dots 21 characters per line
Character type	: alphanumerics, symbols
Speed	: approx. 2 lines/sec
Characters height	: $2,7 \mathrm{~mm}$
Paper	: metallized
Width	: 60 mm
Length	: 30 m (sufficient for 6000 lines)
Diameter (ext.)	: 40 mm
Examples	: R. Bosch RMP 8146-24V Silverno 890-2B Omega reference 9051-6002
Automatic printing:	- of a title to separate the races - of all data manually input or modified - of the race valid parameter - of the race number, heat number - of the starting time - of the date - of the final or intermediate times in chronological order
Printing on request:	- of the final classification, with or without backup time, in rank order (arrival order)

OMEGA
ELECTRONICS

Specific
Printing: - (..---) if there is no recorded time

- FD printed on Auto FD classification, if there was a false start in relay
- M if an arrival or a start was given manually, on the keyboard
- * if a time was introduced on the keyboard (INSERTION)
- D Program AUTO FD to mark the starting block lane, when it is the difference between the starting block time and the touch pad time which is printed

If false start, time preceded by a - sign if not, preceded by + sign

- T printed on the MANUAL program if a time is missing from one or more push buttons
2.5 Display characteristics

Type

Character type:
Vision:
Character height:
Protection:
Control:

LCD (Liquid Crystal Display) 7 segments 16 characters
numerical, symbols
reflective, unmagnified
$12,7 \mathrm{~mm}$
anti-reflexive plexiglas

- mains "ON" indicator
- low battery indicator

Symbol display for lane control

989	Lane unused (no segment)
EES	Lane unarmed
E83	Lane armed
888	Activated touch pad
$00^{\circ} \mathrm{O}$	Final arrival

Information display for race control

2.6 Input Output characteristics

See data sheet E 0013-0140

Supplementary characteristics:

START OUT \quad- repetition of the START impulse opening contact absent of any polarity - opening, less than 100 ms	
-	Maximum load:
	$\vee \max =50 \mathrm{Vdc}$
	I max $=0.3 \mathrm{~A}$
	load $=5 \mathrm{~W}$
-	time lag between START IN \& START OUT
	3 ms typical

2.7 Functional characteristics

2.7.1 Initialisation of the OSM 6

Only when switching on the equipment
Type of board: - choice of the scorebaord
Can be:

- Best Time (1 line)
- Multiline (max. 10 lines)

Can display results in

- place order
- lane order

Number of lanes - 1 to 10
Time unit

- $1 / 1000$ or $1 / 100 \mathrm{sec}$

If $1 / 1000$, we have:

- 1/1000 printing
- 1/1000 display
- 1/100 scoreboard display
- swimmer ex-aequo if their times are the same to $1 / 100$ (FINA)
- relay error if starting block time +9 ms is less than touch pad time

Date - 3 fields of 2 figures for day/month/year
Time of day - input \& synchronisation

2.7.2 Race definition

Choice of program: - AUTO

> Inputs
> $x 1:$ touch pad
> $x 2$: manual push button (back-up)
> $x 3$: unused
> official time $=x 1$

2.7.3 Timing	
START	- start - printing the time of day
Intermediate time	- display of lap number - display of lane number of the leading swimmer - printing of official times in chronological order - automatic increase of lap number - control of activated touch paas
Final arrival	- same as intermediate arrival, but, - no automatic increase of lap number
Lanes control	- automatic arming - on the display, control of: - activated lane - armed lane - unarmed lane - lane ready for final arrival - order given through the keyboard - unused lanes - armed or unarmed - manual start and arrival
Memory	- of all events which happened during the race including when lanes were unarmed or when the competition was normally over. Times are not printed, but can be recalled for later corrections
Next START	- fucntion which separates two events - function which keeps the final arrivals times from the last face in memory - erasing of the main memory area, for the recording of the next race events

2.7.6 Display, printing of the results

Display	- to check the race
	- to display the time of day

Printer | | $-\quad$ ranking according to official time |
| ---: | :--- |
| | in arrival order |
| - | ranking according to official time, with a |
| | record of back-up times |

1-1ine board

- the first 2 sections depend on the initialisation
- place-line if ranking order
- line-place if lanes order
- 0.00 sec display after next start function
- display of running time during the race
- on each lap, the display for 10 seconds of the time of the best swimmer
- winner's time display at finish
- upon request: sequential display of all times, one every 4 seconds, and then display of winner's time

Multilines scoreboard

- the first two sections depend on the initialisation
- place-line
- line-place
- after NEXT START function:
. 1st line : 0.00 sec
- other lines : erased
- during the race
- 1st line : running time
- other lines : erased
- on each lap the display for 10 seconds of the previous lap time for each swimmer
- time of each swimmer displayed at finisn

2.8 Plug-in module characteristics

The 3 programs, MANUAL, AUTO, AUTO FD, for the timing of swimming competitions are included in the OSM 6 basic version and therefore no plug-in modules are necessary

The plug-in modules are options which increase the OSM 6 performance and make it suitable for other sports.

The plug-in module is located in the printer's cover.
It can be removed or inserted without tools. (When the OSM 6 is disconnected)

Memory capacity:: 8 K Bytes

2.9 Equipment layout

1. Opening of printer cover
2. Allows removal of the ribbon
3. Manual advance of the ribbon
4. Numerical keyboard
5. Control key-board for the lanes
6. Key-board for introducing race parameters
7. Correction key-board
8. Keyboard for displaying results
9. ON/OFF switch
10. 0,8 A slow blowing fuses
11. 12 V battery connector

12 Harness connector
13. Starting system connector
14. Scoreboard connector
15. Data handing computer connector

16 Acoustic start connector
3. Commissioning and maintenance of the OSM 6
3.1 Putting into operation

- Take the OSM 6 out of the box
- Keep the box, it may be useful for future transportation of the OSM 6
- Open the OSM 6
- If necessary, connect the plug-in module
- open the printer cover with
- push on (2) to remove paper
- pull out the dummy module
- insert module between guide, and push it home completely
metallized surface must be on top
- Puting paper roll in place

- the roll is fixed to the cover by 2 grips
- metallized surface must be on top
- cut the end of the paper so that it is square
- insert paper into feeding head
- advance paper manually with (3)
- prior closing the cover, check that the small chromed strap is tilted backward
- When changing paper roll do not forget to push on (2) to remove ribbon

Attention: do not touch buttons when printing is in process

- If paper in not cut after each race, protect it with the winding spool provided in the box of accessories
- Keep the cover open with the supports

Provide adequate shelter against water and sun. If necessary, protect the OSM 6 with a sun-shade.

The operator must have good visual contact of the finishing line.

3.2 Connection of the OSM 6

- Install all peripherals according to installation instructions
- touch pad
- starting blocks
- OSM 6 and battery
- starting system and its tripod (if appropriate)
- Opposite each lane, place a connection module, with corresponding number. (regardless of the OSM 6 position)
- To make the connections refer to the installation documents. For example refer to diagrams $1-\mathrm{A}$ and 2 - A
- Connect the 24 m cable 312 to the connection module,
- Connect intermodule cables 311
- Fix the last module with an end plug
- Note. When connecting the OSM 6:
- avoid getting sockets wet be careful to respect connectors polarity
- (plugs have various diameters) do not bend or twist cables
- Connect timing peripherals to connection modules

MANUAL

- 3 manual push buttons

AUTOMATIQUE

- touch pad
- manual push buttons
- starting block

If necessary, recharge battery overnight

It is strictly forbidden and dangerous to connect the charger to the battery, whilst the peripherals are connected to the OSM 6

- connect harness cable TOUCH PAD

- connect start traducer (201) to
- if necessary, connect display board 14 to SCORE BOARD

3.3 Maintenance

- protect the OSM 6 against heat and humidity
- protect from the sun, if necessary, with a sunshade
- protect it against water droplets - by setting it away from starting blocks
- with a transparent shield
- after a race, clean the OSM 6 and make sure it is dry before you store it.

3.4 Trouble-shooting

The equipment
does not work

The printer
does not work

- switch 9 is not on
- battery connected with wrong polarity
- bad contact
- fuse 10 defective

See our local agent

- check printer fuse
- unscrew and take out all connecting plugs
- unscrew the 4 rubber feet
- take the console out of the case
- change defective fuse
(1.5 A slow blowing $5 \times 20 \mathrm{~mm}$)

Paper jammed
in the printer

- cut paper between the roll and feeding head so that it is square
- feed fresh paper with wheel (3)
by pushing on (2)
- remove paper cutter by moving it toward A then pulling it toward
- lightly push on printing head toward (C)
- pull out paper waste with a tweezers
- put back the paper cutter

- push the right side against the small metallic lever (D) and push on
(F) to set the other side
. move paper cutter toward (G) to put it back to its original place

Bad printing	- proceed as above
	- clean the printing head with a
	brush

For other breakdown or problems, see our local agent
Ω

4. Utilisation

Your OSM 6 is a computerized high-precision instrument automatically performing a great number of programmed timing functions.
The operation of the OSM 6 is very simple and apart from the knowledge of the competition rules no particular skill is required.

Long experience suggests the following ten points should be observed in order to feel confident with the OSM 6 timing system and to ensure the perfect timing of all competitions:

1. Install the OSM 6 in sight of the finishing line and if necessary provide a sunshade for the instrument. Wire the installation and connect the prescribed power supply according to the operating manual.
2. Acquaint yourself with the various functions of all the switches on the OSM 6 control panel.
3. Check-out the installation prior to all competitions. Ensure that the battery is charged, you have sufficient paper and that the peripheral equipment supplies timing pulses.
4. Operate the OSM 6 as indicated in the different sections of the operating manual.
5. Establish a good visual contact with the starter, reset the OSM 6 and be prepared for the start when the starter calls the competitors.
6. Once started, follow the meeting with attention - don't become bored by the repetitive routine.
7. Remain alert in order to correct any irregularitiy you may become aware of.
8. The printer is a piece of miniaturized high-precision equipment, therefore take care when loading fresh paper and tearing off printed tickets. Remember that the timing process goes on even when paper is blocked. The stored final results can always be printed once the printer is back to its normal working condition.
9. After a race, check the OSM 6 ranking against the referee's. If you operate two OSM 6 in parallel, compare the times prior to handing them over to the officials.
10. After the competition, dismantle and store the equipment carefully.

If you are a beginner

- carefully read the operator's manual
- practice the OSM 6 functions
- choose the AUTO program
- practice all the functions described in the following chapter. You can simulate start and arrival with the keyboard.

If you have little experience

- practice the OSM 6 function during training
- use correction functions, e.g. false start
- use the scoreboard and observe its functions

With a little experience, you can be a good time keeper, because the operation of the OSM 6 is straight forward

As long as there are no unexpected events, the operator does not have to interfere.

After each race, to display the results, follow these 3 steps

- PRINT RSLT printing of the results
- PRINT BACK UP results + back-up time
- LANE ON + START equipment ready for NEXT START

With LANE OFF + START, you can always go back to the last race
Ω
OMEGA
electronics

5. Use of the OSM 6

5.1 Connection of the OSM 6

Press on switch 9 on - OFF, in the
indicated direction

OMEGA SUIMA-0-DRTIG
When connecting the OSM 6
printing of heading and program number 01 : basic program

The parameters to be inserted are:

- type of board
- number of lanes (1 to 10)
- time unit
- date
- time of day
- time synchronisation

Once these parameters are inserted, they cannot be modified. If other values are needed, switch the OSM 6 OFF, then ON

All inserted parameters are printed so the operator can check these values at any time

5.2 Insertion of the type of scoreboard

There are 4 possibilities. Check the display to select the correct type of board

15Lb. : PL	$11 \cap E$	1 line board called "Best Time", according to swimmers rank, displays the lane number and the time
5cb. 2 LR	$1 \mathrm{~L} \cap \mathrm{E}$	1 line board called "Best Time" according to lane number displays the rank and time of the swimmer
$5 ¢ 63 \mathrm{PL}$	$10 \quad 11 \cap E S$	Multiline board (Max. 10) according to swimmers rank, displays the lane number and time
556418	$10 \quad 11 n E 5$	Multiline board (Max. 10) according to lane number, displays the rank and time of the swimmer

The cursor blinks on the parameter to be inserted, here, number of the type of board. (a figure from 1 to 4)

To insert: - press the corresponding figure on the numerical key-board

- check the type of board on the display
- press ENTER

Other method:

Basic value:

- press NEXT or LAST, to check the different possibilities on the board
- stop when the display corresponds to the type of board
- press ENTER
- if no scoreboard in the installation press ESC to leave this section
- the OSM 6 will then act as if function SCB 1 was introduced

If by mistake you press a wrong key, the OSM 6 will give a loud BEEP and will wait until the operator presses the correct key. Only keys ESC and ENTER allows you to go from one section to the other.

5.3 Insertion of the number of lanes

ThnE 12 34567890 - the number of lanes is displayed

- for a non-existent lane number to disappear press the number of the nonexistent lane once on the numerical board
- press the same key again,the lane number is back on the display
- the display gives the number of lanes in use
When these numbers correspond to your pool configuration, press ENTER

LRnE I 3455 - example: display for a 6 lane pool

Basic value: - press ESC if you want to avoid this section The OSM 6 will act as if the pool has 10 lanes

5.4 Insertion of the time base

There are 2 possibilities, check the display to make your choice PrEC. 1 I 1000 timing, $1 / 1000 \mathrm{sec}$

- display and built-in printer $1 / 1000 \mathrm{sec}$.
- transmission to external peripherals $1 / 100 \mathrm{sec}$ (FINA)
- 2 swimmers declared even, if their time is identical to $1 / 1000 \mathrm{sec}$

PrEC. 2 $1.100-$ timing $1 / 100 \mathrm{sec}$

- display and built-in printer $1 / 100 \mathrm{sec}$
- transmission to external peripherals au $1 / 100 \mathrm{sec}$
- 2 swimmers are declared even, if their time is identical to $1 / 100 \mathrm{sec}$

To insert: - press 1 or 2 on the numerical keyboard to choose the unit

- other methods: use LAST and NEXT to check the different possibilities
- make sure the display corresponds to the chosen unit
- press ENTER

Basic value: \quad - press ESC to avoid this section The OSM 6 will work in PREC. 1 $1 / 1000 \mathrm{sec}$

5.5 Insertion of the date

3 fields of 2 figures separated by a full stop are reserved for the date.
Day, month, year can be introduced in any order, the OSM 6 having no calendar.
The printer will show this information in the order in which it has been introduced.

$\bar{R} \boldsymbol{R}$	AUSUND you can locate these fields on the display
	- the cursor blinks on the first figure to be introduced
To insert:	- press the figure corresponding to the date on the numerical keyboard - in case of mistake, the cursor can be moved from left to right - make sure the display shows the correct date - press ENTER

dREE USU2.83- example Feb. 9, 1983
Basic value:

- press ESC to avoid this section the OSM 6 will print 00/00/00

5.6 Insertion of the time of day

3 fields of 2 figures are reserved for the time of day display. Insert figures in the following order only, hours, minutes, seconds (the equipment does not accept erroneous values).

To have time for synchronisation introduce a value in advance, 10 - 60 sec depending on your experience in timing.

5.7 Synchronisation of time of day

The initial time of day value is inserted, but the clock will not work as long as the START order is not received.

5 SnL.	\qquad - keep the function key TEST down - when it is time for the clock to go on, press function key START
	\qquad - the equipment is synchronized, and StRrt ready for timing
	The display shows that the equipment is awaiting the NEXT start.

6. Definition of the race

The parameters give the following definition:

- program
- arming time
- event and heat number
- number of laps (length of the race)

The value of these parameters can be modified at any time, but the consequences of such changes are not always the same, they depend on the OSM state.

Once these 4 parameters are introduced, they are valid for all future events.
For each race, (but not each heat) the race number, number of laps and possibly the program, must be changed.

For the operator to know what is going on, each modification is printed.

6.1 Choice of program

3 possibilities.
Check the display to select the correct program.

PrOS \quad RUL - AUTOMATIC, for individual and relay (without false relay control)

PrDE, ? Fd RULG-AUTOMATIC FD, for relay races (without false relay control)

ProL. 3 nRnURL- MANUAL, with 3 manual push buttons for individual and relay races (without false relay control)

The program must be selected before the race starts.
To change program during a race, for example, between lap 1 and lap 2, makes no sense. However, this possibility exists but you should only use it to correct an operator error.
If the correction happens during the first lap there will be no consequences, times will be recorded on the right program.

To insert:

- press PROG
- the cursor blinks on the figure to be inserted
- press the figure on the numerical key-board
- other possibilities: use function keys LAST and NEXT to check the different possibilities
- check the program's name on the display
- press ENTER

To check: - press PROG

- check the program's name on the display
- press ESC
- this operation can be done at any moment

Basic value: - when switched on, the equipment works with PROG 1 : AUTO

6.2 Introduction of arming time

Arming Time, A.T. is the time we have to wait for a lane to be armed, that is, ready to register an arrival.
After each start, or any time a swimmer touches the pad and goes to the next lap, the lane is disarmed.
For the swimmer's time to be registered, the lane must be armed. A.T. must be adjusted according to the swimmers capacity. A.T. must be between $1 \& 99$ seconds

We recommand:

> A.T. $=15 \mathrm{sec}$ for 25 m pool
> A.T. $=45 \mathrm{sec}$ for 50 m pool

```
    When A.T. is changed, the new value is not taken into considera-
    tion at once.
    It will be after a START (start of the event) or after a pad
    has been touched.
    Example: A.T. is changed during an event.
    For the present lap, it is still the old A.T. value which is
    considered.
    After the turn, (contact of a touch pad) the new A.T. value
    will determine the arming of the lane.
    To insert: - press ARM Time
    - the cursor blinks on the first fi-
        gure to be inserted
    - insert A.T by means of the nume-
        rical keyboard
Rrf.E| TE S4 SEC- check the value on the display
                S4 5E[ - press ENTER
    To check: - press ARM TIME
    - check the value on the display
    - press ESC
    - this operation can be done at any
    time
```

Basic value:
Rr n.t InE

Special cases:

- if we introduce A.T $=0$, the OSM 6 does not consider the arming time, there is no automatic arming. The operator must arm the lane by means of the keyboard

6.3 Introduction of the event number, heat number

The races can be marked (EVENT) by a number of 3 digits and the heat (HEAT) by a number of two digits. The first event number and heat number are inserted. This information is printed at the time of START.

Every time the function NEXT START is called, (LANE ON + START) the heat number is automatically increased by 1 and this until the number of the race is modified.

It is not possible to modify the numbers after the race is started, so all the printed paper strips will have the same numbers.

Nevertheless, if new numbers are introduced during or after the race, they will only be considered for the next event.

To insert: - press EVENT HEAT

- the cursor blinks on the figure of the event number (EVENT)
 - insert a three 3 digit number (example 123)

EUEnE 123 HERE $O D$ the cursor blinks on the

- insert a two digit number (example 4 5)
E- check the values on the display EUENE I23 HERE 4S - correct, if necessary, by means of the cursor
- press ENTER

To check:

- press EVENT HEAT
- check the values on the display
- press ESC

Basic value: - the basic values are nil. In this case the printer writes down EVENT HEAT but not the numbers
There is space to write with a pen

Special cases:

- introduce nil values The OSM 6 will act as with Basic values
- if the race number is nil, but not the heat number, the heat number will be incremented

6.4 Introduction of the number of laps

The length of the race is expressed as a number of laps:

50 mpool	$: \quad 100 \mathrm{~m}=1 \mathrm{lap}$
25 mpool	$:$
20 m	$=1 \mathrm{lap}$

The OSM6 automatically counts the number of laps between $1 \& 100$ When the number of laps is changed, the new value is automatically taken. into consideration.

To inserts

- press LAP
- the cursor blinks on the first figure to be introduced
LRPS

08 numerical keyboard

- check the value on the display
- press ENTER

7. Timing

The 3 resident programs (AUTO, AUTO FD, MANUAL) have the following similarities.

- the developments of the race are identical
- the timing procedure is the same
- the display information is identical
- the information printed during the race is similar There are some small differences depending on the program
- classifications with back-up times are appropriate to each program

The following is the timing of a race using the AUTO program, which is used more often.
7.1 Timing with the AUTO program

1. Prepare the OSM 6 as per chapter 3 Make the connections as per installation schematic
2. Connect the OSM 6 and initialise it as per chapter 5

- Printed heading when connected
- 01: basic program
- Data input
- 1 line board, in place order
- 6 lanes pool
- time unit
- date, April 20, 1983
- time of day

SYHCHRO 13.54: 64. G日 - synchronisation of time of day
3. After synchronisation the equipment is automatically ready for the NEXT START

\cdots

\square StRrE- the display shows

- that lanes are unarmed
- that the equipment awaits a START
- the printer indicates the value defined by the program for the race parameters
OHEGA SUIM-g-MATIC OSM_{6} • a heading

READY FOR HEW RACE - ready for a new race

- these parameters can now be modified

HENING: 45 SEG arming time : 45 sec (50 m pool)
EUEHT : 123 HETT : 45 - input of race and heat number
LAPS:
02 . number of laps : 2 (200 m)

- skip point 4 and go directly to point 5.

4. At the end of a race, after printing the various classifications or at any time the equipment is not ready for the NEXT START press

LANE ON + START
\cdots 5દ月rt -... the display shows

- that lanes are disarmed
- that the equipment is awaiting a START
- the printer indicates the defined parameter of the race

GIEGA SUIT-G-METIC 0516

- heading

FERDY FOE NEU PRE \quad ready for a new race

- following can still be done:
- check the values on the display
- modify these 3 values as well as the event and heat number

5．The start is given through the starting device

\square 1.1
－the display shows：
－that the lanes are disarmed
－that the race is in lap 1
－the printer shows：

EVERT ： 123 HEFT ： 45

After the START，all the defined parameters of the event can be checked and modified except the event and heat number

This makes the inversion of the results of two events impossible
\square
ミミミミミ \square
L． 1
6．after arming time the lanes are automatically rearmed

7．Intermediate time 1 （1st swimmer）
EZ BE Z \square L．1 3 －the display shows：
－no．of lane where the first swimmer is
－that the touch pad is activated
（the symbol is displayed for $0,5 \mathrm{sec}$ ）
－the printer shows：
－the actual time of the touchpad

8. Next intermediate times

- the display shows
- that lane 3 is unarmed
- that other swimmers are arriving

88-888 1.13
 - the printer shows
 - all actual touch pad times in arrival order

13	1	50.645
2	1	1
5	50.891	
4	5	1
5	50.910	
6	1	50.90
	50.931	

9. After arming time, lanes are automatically armed

10. Next final times

- the display shows that the race is
over
- the printer shows
- all actual touchpad times in arrival order

12. Printing of the results after the race

- press PRINT then RSLT
- heading
- event and heat number
. time of start
. date
- title for results
chronological classification of official times
(printed as actual time of event)

13. After the race, printing of the results with back-up time

- press PRINT then BACK UP
- heading

OMEGA SHIM-0-MATIC 05116

EUENT : 123 HERT : 45

P

$\left\llcorner\frac{1}{\square}\right.$
F $\overline{\mathrm{H}} \mathrm{L} \quad 20164 / 63$
CH H
E E F EACK IF

14	2	$1: 40.476$	
4	2	$1: 40.472$	
2.3	2	$1: 40.819$	
3	2	$1: 42.566$	
3	5	2	$1: 41.116$
5	2	$1: 42.534$	
42	2	$1: 41.272$	
2	2	$1: 42.551$	
5	6	2	$1: 41.441$
6	2	$1: 42.518$	
6	1	2	$1: 41.641$
1	2	$1: 42.532$	

- number of event, heat
- time of START
- date
. title for back-up time
- official touchpad time
- back-up time with manual push buttons

The place number is printed with reference to official times
14. Get ready for the next race,

Back to point 4
8. Display of the results
8.1 Display on the built-in printer

Reminder: Function NEXT START LANE ON + START
separates the two races.
The race which takes place before this function is monitored is called:

PREVIOUS EVENT
The race which is taking place or going to take place after is called

CURRENT EVENT
The OSM 6 allows storage of the final results of the previous event in the memory and to print them during the current event.

There are 4 printing options

PRINT	11	:	intermediate or final results of the current event
PRINT	12	:	intermediate or final results, with back-up time, of the current event
PRINT	21	:	final results of the previous event
PRINT	22	:	final results, with back-up time, of the previous event
To pri			- press PRINT

- the cursor blinks on the first figure to be inserted The numbers beginning with 1 allow the choice of the current event
- the keys LAST \& NEXT allow to see the various possible printing options

Print 2. OLd rRLE

- To print the results of the previous event, the number must begin with 2
- After choosing between current event and previous event, move the cursor onto the second figure by means of the right cursor key
- Example for current event
- the cursor blinks on the second figure
- with keys LAST NEXT we can choose:
- to print the results
- to print the results with back-up time
- Example for previous event
- the cursor blinks on the second figure
- with keys LAST NEXT we can choose:
- to print the results

Print 21 reSWLt

Print 2? 6REK UP
Print 1. run. rRCE

Prlnt 11 rESULE

Prink i2 bRCK UP

Print Z. Std rREE

- to print the results with back-up time
- When display corresponds to the desired printing option, press ENTER

Direct method - For current event, to print the results

- press PRINT
- press RSLT
- For current event, to print the results
- press PRINT
- press BACK UP
- For the previous event, to print the results
- press PRINT
- press LAST
- press RSLT
- For the previous event, to print the results with back-up time
- press PRINT
- press LAST
- press BACK UP

Interruption of printing:

- If a classification printing must be interrupted
- press PRINT
- press Clear
- This function affects only the printing controlled by the operator, it is not possible to suppress or interrupt the automatic printing

Printing examples can be seen in chapter 7 regarding the AuTO program and in chapter 9, regarding the AUTO FD and MANUAL program.
Ω

8.2 Control of the displays on the board

When the clock is running, the OSM 6 transmits the messages to the display board every 0,1 sec.
The time of event will be displayed in seconds or in tenths of a second, depending on the type of board (electromecanical unit or lampbox)

There are two ways of presenting the information:

chronological classification (arrival order)

There are 4 control functions of the board:
SCb. 1 :

- display of the current event
- transmission of the event time 0.1 sec (running time)
- display of intermediate times for 10 sec, then back to the running time
- display of the final times until the operator calls the NEXT START function

SCb. 2 :

- dispatch of characters "SPACE" which erases the board

SCb. 3 : - dispatch of characters to the board, to display final results

SCb. 4 : - allows the display of time of day on the board, during competition interruptions
For example, lunch break

These 3 functions are permanent, i.e. we stay in one of these modes until the operator decides to change.

To display: - press SCB

SIb. 1 run. rAE - the builtin display allows the controd of the type of display Here, display of the current event

- the cursor blinks on the figure to be inserted
- the various possibilities can be terted by means of keys LAST \& NEXT

SIb. ? [LEAr - erasure of the board

Sb. 3 rESULt - display of final results
if by the time this function is called, the instrument hasn't registered any time, the board is erased

Sib. 4 dRY E/ $\cap E$ - display of the time of day

- this system does not allow the display of race results, therefore it must only be used during competition interruptions
- check the type of display on the builtin display
- press ENTER

Direct method

Basic value

Special cases

- to make the control of the board easier, the keyboard has function keys
- SCb 1 current event
- press SCB
- press ENTER
- SCb 2 erasure of the board
- press SCB
- press CLEAR
- SCb 3 final results
- press SCB
- press RSLT
- SCb 4 time of day
- press SCB
- press 4
- press ENTER
- SBb 1 current event
- Let's assume that a race has just ended, example 104 heat 02
- If we call SCB RSLT the board displays the final results of event 104/2
- If the equipment is prepared for the NEXT START, and if we call LANE ON + START, then SCB RSLT, the board will still display the results of the event 104/2

This is useful when starts of the different heats are very close. We can prepare the equipment for the next race while we display the results of the race which just ended

- If the start of the event is given and we call SCB RSLT before the OSM 6 registers a time, the board will be erased
8.3 Display on a 1 line board

We shall examine the various messages displayed during the event:

The function SCB RSLT allows the display of all results in sequence :

- one sequence allows all times to be displayed one after the other
- the time of each swimmer is displayed for 4 sec .
- at the end of the sequence, the display again gives the time of the first swimmer
- this function can be used after every lap and for the final times

Direct method	- to make the control of the board easier, the keyboard has function keys
	- SCb 1 current event - press SCB - press ENTER
	- SCb 2 erasure of the board - press SCB - press CLEAR
	$\begin{aligned} & \text { - SCb } 3 \text { final results } \\ & \text { - press } \text { SCB } \\ & \text { - press RSLT } \end{aligned}$
	- SCb 4 time of day - press SCB - press 4 - press ENTER
Basic value	- SBb 1 current event
Special cases	- Let's assume that a race has just ended, example 104 heat 02
	- If we call SCB RSLT the board displays the final results of event 104/2
	- If the equipment is prepared for the NEXT START, and if we call LANE ON + START, then SCB RSLT, the board will still display the results of the event 104/2
	This is useful when starts of the different heats are very close. We can prepare the equipment for the next race while we display the results of the race which just ended
	- If the start of the event is given and we call SCB RSLT before the OSM 6 registers a time, the board will be erased

8.3 Display on a 1 line board

We shall examine the various messages displayed during the event:

- back to running time display

1GコG コ.JG.7g - final times

The function $S C B$ RSLT allows the display of all results in sequence :

- one sequence allows all times to be displayed one after the other
- the time of each swimmer is displayed for 4 sec .
- at the end of the sequence, the display again gives the time of the first swimmer
- this function can be used after every lap and for the final times

MEGA CTRONICS
irect method
asic value
pecial cases

- to make the control of the board easier, the keyboard has function keys
- SCb 1 current event
- press SCB
- press ENTER
- SCb 2 erasure of the board
- press SCB
- press CLEAR
- SCb 3 final results
- press SCB
- press RSLT
- SCb 4 time of day
- press SCB
- press 4
- press ENTER
- SBb 1 current event
- Let's assume that a race has just ended, example 104 heat 02
- If we call SCB RSLT the board displays the final results of event 104/2
- If the equipment is prepared for the NEXT START, and if we call LANE ON + START, then SCB RSLT, the board will still display the results of the event 104/2

This is useful when starts of the different heats are very close.
We can prepare the equipment for the next race while we display the results of the race which just ended

- If the start of the event is given and we call SCB RSLT before the OSM 6 registers a time, the board will be erased

8.3 Display on a 1 line board

We shall examine the various messages displayed during the event:
 play of best swimmer's time

final times

The function SCB RSLT allows the display of all results in sequence :

- one sequence allows all times to be displayed one after the other
- the time of each swimmer is displayed for 4 sec .
- at the end of the sequence, the display again gives the time of the first swimmer
- this function can be used after every lap and for the final times

9. Event examples

We shall examine timing with AUTO FD and MANUAL programs We already have seen timing with AUTO program, see chapter 7 . and therefore we shall simplify.

- We skip development of the event on the display, as it is the same for each program.
- We skip the OSM 6 initialisation and definition parameters
- We shall see only printed messages in order to count up the results.
9.1 Example: AUTO FD program

Relay, $4 \times 100 \mathrm{~m}$ Individual Medley Only 4 lanes are used

- printed heading at time of LANE ON + START

F. 14.43:47.939

1 L
F H L 2604184
CN
E E F

1	3	1	1:61.641
2	4	1	1:02.413
3	2	1	1:62.607
4	1	1	1:92.892
D	3	1	+ 1.589
[4	1	$+0.806$
D	1	1	$+8.465$
D	2	1	+ 1.964

- arming time : $45 \mathrm{sec}(50 \mathrm{~m}$ pool)
- number of laps : 4 ($4 \times 100 \mathrm{~m}$)
- program : FD AUTO Relay
- ready for a new race
- start is given, we print:
. event no. : 100 heat no. : 4
- time of start
- date: April 26, 1984
- intermediate arrival lap 1
touchpad registered times in chronological order

D: start from starting blocks, the printed time is the interval between starting block and touchpad time

- intermediate times lap 2

14	2	2:91.034	Touchpad registered times
23	2	2:01.566	
32	2	2:62.083	
41	2	2:02.411	
D. 4	2	+ 0.267	D: start from starting blocks
D 3	2	+ 0.260	on lane: 1 the time is not recorded,
0	2		as interval between block and touchpad
D 2	2	$+8.261$	is more than 2 sec .
13	3	3:11:455	
[3	3	$+0.523$	- intermediate times lap 3
22	3	3.69 .698	Touchpad registered time
34	3	$3: 04.267$	Touchpad registered time
41	3	3:64.331	
D 2	3	- 0.347	D: start from starting blocks
D 1	3	+ 0.518	On lane 2: false start, the interval
4	3	+ 0.499	between block and pad is negative
13	4	4:91.343	
22	4		- final time lap 4
34	4	$4: 62.263$	
41	4	4:92.864	Touchpad registered time

OMEGA SHIM-0-MATIC
EUENT : 106 HERT : 14

14.43:47.939			
PL 14.43 .47 .939			
H H	L		26.0464
CN H			
EEF RESULT			
13	4		4:91.346
2	4	Fi	4:91.811
3	4		4:92.263
	4		4:92.860

Printing of the results PRINT RSLT

- event no. and heat no.
. time of start
. date
- heading for final results

Touchpad registered times
On line 2: false start indication This indication appears only when T block +9 ms is less than T touch pad

OMEGA SUIM-N-MFTIC 0.116

EVENT : 1010 HEAT : 04
P 14.43:47.939

L L				
A	A	L		26/04/84
C	N	A		
E	E	P		EACK UP
1	3	4		4:01.348
	3	4		4:01.321
2	2	4	Fo	$4: 01.811$
	2	4		4:91.799
3	4	4		4:02.263
	4	4		-. ---
4	1	4		4:02.860
	1	4		4:92.845

- printing of results with back-up time PRINT BACK UP
- event no. heat no.
- time of start
- date
- heading for back-up time
- touchpad final times
- back-up manual push button (place not printed)
- back-up manual push button (place not printed)
- back-up manual push button on line 4 has not been pressed

```
200 m race, timing with 3 manual push
buttons per lane
- printed heading at time of
    LANE ON + START
```


- ready for a new race
- start is given we print
- event no. 200 heat no. 3
- time of start
- date: April 26, 1984
- intermediate times lap 1
- official registered times
- official time = median time

RERD' FOR HEW RACE

EUEHT : 2 日ज̆ HEAT : a3
F 14.55:21.571.

| L | L | |
| :--- | :--- | :--- | :--- |
| A | L | $26 / 04 / 84$ |

OMEGA SWIM-O-MATIC 05M 6

EUENT : 2g日 HEAT : 03

P		$14.55: 21.571$	
L L			
A A	L	$26 / 14 / 84$	
C H	A		
E E	P	LAP	1

12	1	$1: 02.078$		
2	1	1	T	$1: 03.498$
3	3	1	T	$1: 04.154$
4	4	1		$1: 04.846$

OMEGA SLIM-G-MATIC. 05116

EUENT : 20414 HEAT : 03

$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	14.55:21.571	
A A	L	26/04/84
CH	A	
E E	P	LAP 1
12	1	1:02.078
2	1	1:01.831
2	1	1:02.782

21	1	$1: 93.498$
1	1	-.0
1	1	$1: 03.462$

$\left.\begin{array}{rrr}3 & 1 & -.--- \\ 3 & 3 & 1 \\ 3 & 1 & 1: 64.154 \\ & 4 & 1\end{array}\right)$

1	1	2	$2: 03.984$
2	2	2	$2: 95.554$
3	3	2	$2: 96.029$
4	4	2	$2: 96.418$

Two manual push buttons are missing
Official time $=$ the only registered time
Two manual push buttons are missing
Official time $=$ the only registered time

Three manual push buttons are missing Official time $=$ median time

Ranking is printed in order of the official time

- PRINT RSLT, printing of the results
. event no. heat no.
. time of start
- date
- heading for lap 1

Official time:. for lanes $1 \& 3$ the symbol T shows that not all 3 manual push buttons have been pressed The detail will show on the next print out

- PRINT BACK UP , printing of the results with back-up time
- event no. heat no.
. time of start
- date
- heading for lap 1
- time keeper 1 line 2
- time keeper 2 line 2
- time keeper 3 line 2

One manual push button is missing Official time $=2$ nd time

- final time lap 1

Official times

OHEGA SUIM-G-MATIC - PRINT RSLT print out of the results EUEHT : 2日G HEAT : 日S - event no. heat no.

F		:21.571	time of start
1 L			
H H	L	$26 \times 4 / 84$	- date
CH	$\stackrel{\text { A }}{ }$. marking for final results
E E	F	EESILT	maxking for final results

1	1	2	$2: 03.964$
2	2	2	$2: 05.554$
5	3	2	$2: 06.00$
4	4	2	$2: 06.418$

Official time : The 3 manual push buttons have all been pressed

442
2:66.418

OMEGA SUIM-0-HATIC 0516

EVEHT : 204 HEAT : 03

F	14.55:21.571	
11		
A H	L	$26.04 / 84$
C H	F	
E E	P	EHCK IP

1	2	$2: 03.994$
1	2	$2: 03.984$
1	2	$2: 03.964$

2	2	$2: 05.580$
2.2	2	$2: 95.554$
2	2	$2: 05.547$

3	2	$2: 06.030$
3	2	$2: 06.020$
3	2	$2: 05.995$

4	2	$2: 06.434$
4	2	$2: 06.418$
4	2	$2: 06.413$

- PRINT BACK UP print out of the results with back-up times
- event no. heat no.
time of start
- date
- heading for back-up times
- time keeper 1 line 1
- time keeper 2 line 1
- time keeper 3 line 1

Ranking is printed in order of the official times

10. Corrections "a posteriori"

These are corrections made after the occurrence of an erroneous event. The corrections can be made after the race.

There are 3 correction functions:

Insertion	:	Insertion of a missing time Time is inserted as per chronological order. This operation increases the number of laps but does not modify the automatic arming conditions.
Modification	:	If a time is registered but not at the right moment it must be modified to the right value. This operation increases the number of laps but does not modify the automatic arming conditions.
Erasement	:	If an extra lap has been registered, it must be erased. This operation reduces the number of laps and the automatic arming conditions return to their values as if nothing had happened.

These functions will not often be used as the reliability of the timing peripherals is such that most of the timekeeping will take place without erroneous events.
This is true for the important competitions like National Championships or World Championships.

But experience shows that an important number of unforeseen events always will occur during events contested by children. In this case, the functions of corrections will be really appreciated.

We give you some examples:

- missed Start, as the equipment is not ready for the next race.
- during a relay competition, a swimmer hits a touchpad when leaving the pool.
- during manual timing a judge presses the push button too early and presses it again when the swimmer arrives.

As the OSM 6 memorized all the events, the necessary corrections can be made, and the exact timing still be assured.

These functions ask for a little experience in the field of timing, so carefully read this chapter and try it out.

Practice the explained manipulations.
Do not forget that in order to make the corrections properly it is necessary to be in the position to identify the unexpected events.

Keep an eye on the development of the race, so that you can make the right corrections.

10.1 Insertion of a time

Let's take a 200 m event (2 laps) as example.
At the intermediate arrival (after lap 1) the OSM 6 does not register a time for lane 2 . Therefore a time must be inserted so that all swimmers stay on the same lap. This will restore the situation for the final times.

EUENT: 1GG HERT: 01 - START is given

P		$11.05: 47.467$. event no. heat no.
$L L$			
A A	L	$27 / 04 / 83$. time of START
$C H$	H		. date
E E	F		

Intermediate time lap 1 No time for lane 2

- PRINT RSLT to print the results

EUEHT : 100 HEAT : OE after lap 1

F 11.05:47.46.7
L 1
f $\mathrm{F} \mathrm{L} \quad 27 / 04 / 83$
CH H
EEF LAF 1

1	3	1	$1: 02.028$. Heading for lap 1
2	4	1	$1: 02.267$	
3	1	1	$1: 02.569$. No time for lane 2

- ミ- \square
- The display shows that the OSM 6 did not register a time for lane 2.
- It is time to insert a time
- press INS

nsert
 \square
 LRnE: -

- the cursor blinks, as it is necessary to indicate the lane number for which we want to insert a time
. insert the line number
- press ENTER

- The display confirms that there is no time for lane 2 at lap 1
- lane number
- lap number
- first letter of INSERT
- The cursor blinks on the number of laps
- If the display is incorrect, press ESC to leave this function
- If display (line,lap) is correct press ENTER to confirm the insertion
- The cursor blinks on the first figure of the time to be introduced The tens of minutes if it is an effective time, the tens of hours if the time is in time of day, as START for example
- Let's insert 1 min 20 for example The value is not very important. What counts is to insert an intermediate time, so the number of laps will be correct

The display enables us to check the inserted value

- Press ENTER if the value is not correct
INSERT LANE TIME - The printer then types the corection 421 1:20.00\%
- We can now check the classification of lap 1
press PRINT RSLT
- heading

EVENT : 100 HEfT : 01 . event no. heat no.

P		:47.467	- time of start
1 L			
A H	L	27/94/83	date
CH^{H}	A		heading for lap
E E	P	LfP	heading for lap

131 1:02.028

2411 1:92.267
$3111: 62.569$
421 1:29.0日* . the time which has been inserted is marked by "*"

- As the race carries on during these modifications, check that the lanes are armed, when the swimmers are near the finish

2: 02.695
2: 02.957
2: 13.185
2:03.449

- End of the race

The 4 final arrivals are registered Winner is at lane 3

Winner is at lane

- the display shows that the race is over
- after the race, the results print out can be requested
- press PRINT RSLT

EUENT : 105 HEFT : 01 . event no. heat no.
P 11. $15: 47.467$
. time of start
$\perp 1$
A A L 27/44/83 . date
$\begin{array}{lll}\mathrm{C} & \mathrm{H} & \text { RESILT } \\ \mathrm{E} & \mathrm{F} & \text { - heading for results }\end{array}$

13	2	$2: 62.695$
22	2	$2: 62.95$
34	2	2:05. 185
41	2	$2 \mathrm{En5} 44$

This is only an example. The operator could have put in a manual which would have given the same result.

10.2 Modification of a time

Let's take as an example a 200 m event (2 laps).
Let's imagine that after 1 lap the swimmer in lane 1 simultaneously triggers the touchpads in lane 1 and 2
Then, after approx. 2 seconds the swimmer in lane 2 makes his turn. There was a time recorded in lane 2 but not at the right time so it must be modified.

As the OSM 6 registers everything, even if lanes are unarmed, It will be possible to find the exact time of the swimmer at lane 2 and the timing can be corrected.

START is given

EUENT: 100 HEAT : 05 - event no. heat no.

\square
\square - All swimmers have made their turn

- It can be seen on the print out that lanes 1 and 2 have the same time The correct time in lane 2 is not printed as the line was unarmed.

12	1	$1: 02.641$	
1	1	1	$1: 02.641$
3	4	1	$1: 04.180$
4	3	1	$1: 04.204$

The modification procedure must be used to trace the correct time.

- Press MOD
- The display requires the introduction of the number of the lane to be modified. The cursor blinks on this position.

- The display shows for lane 2 the registered time at lap 01.
- no of lane
- no of lap
- first letter of MODIFY
- It must be confirmed that the event really happened at the first lap, therefore :
- press ENTER

- press LAST

| 0.012 |
| :--- | :--- | :--- |

- press LAST once again
O.D 1. 2 0 1:04.190 - The correct value for lane 2 is found

All the figures blink together to indicate that this time was registered while the lane was unarmed.

- press LAST to check that there is no other time registered
- No it is not the case

- Press NEXT to trace the time again
\square

- the display returns to the normal monitoring of the event
$\begin{array}{ll}\text { *MODIFY } & \text { LAHE TIME* } \\ 321 & 1: 84.190\end{array}$

DMEGA SUIM-0-MATIC
JSM 6
EUENT : 100 HERT : 05
F $\quad 15.40: 29.618$

L L
A. L 29/04/83

CN A
EE P LFF 1
$\begin{array}{lll}11 & 1 & 1: 02.641 \\ 24 & 1 & 1: 04.180 \\ 32 & 1 & 1: 04.190 \\ 43 & 1 & 1: 04.204\end{array}$

- the printer types an indication of the intervention of the operator
- Our modification can be checked:
- press PRINT RSLT
- the number of the lap
- lane no 2 really has the time that we have registered regularly through the OSM 6, so there is no characteristical sign as if edited on the keyboard.
- Afterwards the event ends normally with the final arrivals on lap 2

10．3 Erasing of a time
Let＇s take as example a 200 m event（ 2 laps）．Let＇s imagine that in the first lap while the lanes are already armed，a swimmer in lane 3 leans over the water to wet his glasses and triggers the pad．The OSM 6 has registered an extra event which must be erased before the intermediary arrival．

```
EUENT : उGO HEAT : GT
    F 15.56:45.943
12
F. H L 29/日4/8J
C \(\mathrm{N}^{-} \mathrm{H}\)
\(E E F\)
```

- start is given

－press ERASE
ErRSE LRAE：－the display requests the insertion of the no of the lane to be erased． The cursor blinks on this position
－press 3
E．S： 3 D：50．916 the display shows the time registered by lane 3 at lap 1

－press ENTER to erase
ミこここ \square
－the display returns to the normal moni－ toring of the event
＊ERFSE LFHE TIME＊ LAHE：S LAF： 01 ERASED
－the printer types an indication of the intervention of the operator

1	4	1	$1: 07.777$	
2	3	1	$1: 87.793$	- then the event carries on normally
3	2	1	$1: 07.802$	with the intermediate time at lap 1
4	1	1	$1: 07.855$	
1	3	2	$2: 18.343$	
2	2	2	$2: 18.532$	
3	1	2	$2: 18.768$	
4	4	2	$2: 18.807$	

11. Correction of the fortuitous events

This chapter describes the best way to correct the most common fortuitous events.
In chapter 10 we have already met three examples of corrections in relation to the input of time. We shall now examine the way to proceed when the modifications are in connection with the START.

11.1 False start of an event

The first shot of the pistol is registered as time of START. The second shot is memorized and printed. But for the race, it is the first shot which is valid. The erasing function of the time of START allows to put the OSM 6 back to its earlier conditions, without modification of the previous event result, and without modification of the current race event and heat number

- start of the event is given

EVEHT : 234 HEAT : 01

- event no, heat no

START 11.3E:45.726 - second shot of pistol to advise a false start $0,7 \mathrm{sec}$ after the first shot.

ErRSE LRnE:	- press ERASE - the display requests the insertion of the number of the lane to be erased It will be the START - press START
E.5t 11 36:45.024	- the display shows the time of the first START
	- time of day of the START . mark for the START . first letter of ERASE
	- press ENTER to erase the data
OHEGA SUIM-0-MATIC $05 M 6$	- the definition parameters of the event are printed again
ARMING: - 5 SEC	
1RP5 : 01	
FROG. : futo	

EEADU FOR HEW RACE

- ready for a NEXT START
\ldots - 5 \&Rr - the erasing is confirmed on the display

11.2 False start as the apparatus is not ready

This happens if the equipment is not ready for the next START i.e the operator has not executed the function LANE ON + START . The START lane must be armed before the departure of a new event as the lanes must be armed before the arrivals. All the START impulses are printed and memorized, but this one will not be registered as official departure time as the instrument was not ready.
The function "INSERTION" must be used now to find this START. After this correction, one must be ready to load the lanes manually depending on the time necessary for this manipulation.

| 1 | 3 | 2 | $2: 04.672$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | $2: 04.264$ | A 200 m event has just ended, and the |
| 3 | 1 | 2 | $2: 64.469$ | |
| 4 | 4 | 2 | $2: 64.895$ | |

0000 R.2 $3^{-t h e ~ d i s p l a y ~ c o r r e s p o n d s ~ t o ~ t h i s ~ s i t u a-~}$

- the start of the next race is given. This time is printed. The display does not change, it corresponds to the previous event
- initialisation of the equipment for the new event

There are 2 cases :
. the number of the event remains the same, it is an extra heat, so there is nothing to do

- the number of the event changes, the new number must be introduced at once as it cannot be changed again during the event
- press LANE ON + START
- this function prepares the OSM 6 for a new event
- the results of the previous event are memorized
- the time of START must be now recovered
- press INS

- the display requests the number of the lane to be inserted
This will be the START
- press START
i. $5 t$ n $t i \nexists E$ - the display shows that there is no time of departure for the current race
- press ENTER to confirm that it is really START that we want to insert

1. $56 \quad \cap \pi$ B

The cursor blinks on the first figure to be introduced.
But we do not want to edit the time by means of the keyboard, we want to trace a registered time

- press LAST to find the last value

1. $5 t 14$ 27:17.75 the display shows the day time of the

- compare this value to the one which has been printed at the moment of start
- all the figures blink together to advise that this time was memorized while the lane was not armed
- press ENTER to attribute this value to the time of START
-•••

- the event carries on normally, display shows that the event is on the first lap.

11.3 There is no START IMPULSE

This can happen if the "START" line is badly connected or if the transducer is defective. In these cases the operator will effect START manually by means of the keyboard and the times registered by the apparatus will be wrong. However the classification will be correct as well as the time difference between the swimmers.

If a second back-up equipment is used, the time of START can be read on it and can be inserted into the first one by means of the MODIFICATION function.
In this case time of START will be edited by means of a keyboard. This correction can be carried out during the event or even afterward.

11.4 There are several START IMPULSES

This can happen if the operator does not erase START and the real start of the event is given after an event for which we had a false start.

In this case the time of START is printed, memorized. To find the exact time of START, the function MODIFICATION, as in example 10.2 will have to be used.

11.5 NEXT START function before the end of the event

If the operator uses the function NEXT START
(LANE ON + START) during an event then :

- the display indicates to the operator that the instrument is ready for a new event
- the OSM 6 carries on acquisition of information automatically but the times are no longer printed.
This is to say, as far as the OSM 6 is concerned, the race continues until the moment of the next START

The function LANE OFF + START allows us to cancel the function NEXT START and the OSM 6 gets back to the last event (for us the current event) and the rest will go on normally.

If intermediate times (finish times) have taken place in the meantime, they can be printed out by means of PRINT RSLT.

Ω OMEGA

少 $\|=\mathbb{E} \mathbb{E} \mathbb{R} \mathbb{R} \mathbb{N} \mathbb{C}$

OSM6
 Data Sheet

OSM 6 basic Characteristics without Plug-in Module

Introduction

The OSM6 is a timing computer for swimming competitions. The system adapted to individual and relay races is designed for $25 \mathrm{~m}, 50 \mathrm{~m}$ and other pools equipped with a maximum of 10 lanes. Thanks to the choice of peripherals the OSM6 can be used for timing local competitions (clubs, schools) as well as for timing Olympic games.
The possibility of introducing plug-in modules enables the OSM 6 to adapt its functions to new applications and various training activities (ask for specifications).
The OSM 6 computer is the heart of a timing system composed of:

- one OSM6
- one watertight wiring system (HARNESS)
- one starting system
- one arrival detection system.

At any time an installation can be completed with:

- starting blocks, for relay control
- one-line board (BEST TIME)
- one multiline board
- acoustic and flash start signal
- diffusion of information to TV network, Data Handling computer
The OSM 6 comes in a black portable case composed of:
- one control panel with connection plugs
- one keyboard with 39 keys
- one LCD display, 16 characters
- one electrosensitive printer, 21 characters per line
- one electronic circuit with micro-processors.

Timing Program

The OSM 6 features 3 timing programs: 1. AUTO

Automatic timing for individual and relay races, without false start control

- arrival times given through touch pad
- back-up system with one push button per lane.

2. AUTO FD

Automatic timing for relay races, with false start control:

- arrival times given through touch pads
-back-up possible with one push button per lane
- starting times given through starting blocks.

3. MANUAL

Manual timing for individual and relay races, without relay false start control

- arrival times given by 3 push buttons per lane.

General Characteristics

Form:	black portable case
Dimensions:	
Length	480 mm
Width	380 mm
Height	150 mm
Weight:	$5,8 \mathrm{~kg}$
Temperature:	
Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative	85% at $30^{\circ} \mathrm{C}$
humidity:	non-condensing
Power supply:	-12 V NiCd or lead battery (10,8 to $14,4 \mathrm{VDC})$
consumption:	- average: 0,7 A - peak: 1,5 A during printing
autonomy:	$\begin{aligned} & \text { - approx. } 12 \mathrm{~h} \text { at } \\ & +20^{\circ} \mathrm{C} \text { with } 9,5 \mathrm{Ah} \\ & \text { battery } \end{aligned}$

Switching on: fuse	- ON/OFF switch on the console $-0,8 \mathrm{~A}$ on the console
Counter:	
time base	Quartz oscillator $6,144 \mathrm{MHz}$
capacity	23 h 59 min 59,999 sec
timing	$1 / 100$ or $1 / 1000 \mathrm{sec}$. programmable
accuracy at	
stability between	
$\begin{aligned} & 0 \text { and } 50^{\circ} \mathrm{C} \\ & \text { aging } \end{aligned}$	$\pm 1010^{-6}$ typical $\pm 210^{-6}$ per year
Printer:	
type	- electrosensitive 5×7
	21 characters per line
character	
height	-2,7mm
speed	- approx. 2 lines per second
paper	- metallized, electrosensitive
width	-60 mm
length	-30 m (sufficient for 6000 lines)
Display:	
type	- LCD (Liquid Crystal Display)
	- 16 characters 7 segments
	- character height:
	$12,7 \mathrm{~mm}$
character types readability	- numerical, symbols
	- reflective, unmagnified
Keyboard:	
39 keys, all protected against water drops:	
- 29 function keys	
	- 10 numerical keys

Input/Output

Output	Type of connection plugs	Characteristics	Use
Battery	4 pole plastic male plug Cable with 2 plugs and 2 aligator clips	wiring, see 3085-506	Power supply 12 VDC external
Start	4 pole plastic female plug	- opening contact without voltage - power supply for LED on transducer; connection see 3085-508	- to initiate the timing - to connect the start transducer
Arrival	4 pole plastic female plug	- compatible with OMEGA harness; specification see 3085-507 - maximum distance between first module and OSM 6: 184 m	to connect the harness which transmits the information and its identification to the OSM6
Output Start	4 pole plastic female plug	- opening contact without voltage - repetition of start impulse; connection see 3085-511	- to initiate the acoustic starting device - to initiate the back-up timing
Display board	4 pole plastic female plug	- ASCII 20 mA current loop 9600 baud; transmission and connection see 3085-509 - maximum distance 300 m on $\varnothing 0,6 \mathrm{~mm}$ twisted shielded cable; spec., see 3085-510	display h. min. sec. and $1 / 100$ sec. - sequential on "Best Time" board - 2 - to 10 -line board - computer controlled information board
Data Handling	4 pole plastic female plug	- same as board or - defined by the plug-in module	Data Handling for the preparation of starting list according to FINA regulations

Transmission mode, see document

Functional characteristics

LCD display

- mains "ON" indicator
- low battery indicator
- control of introduced values
- control of the execution of an order

Lane control during the race

- armed
- unarmed
- activated (short circuited)
- unused

Race control

- display of the lap number of the race
- display of the lane number after each lap of the first swimmer
- on each line, symbol for final time

Printer

Printing before and during the race:

- heading
- any introduction or modification of parameters
- race number, heat number
- starting time
- date
- intermediate and final times in chronological order
Printing on request
- final and back-up times in chronological order.

Specific printing

-(- -): if there is no recorded time
-FD: printed on Auto FD classification, if there was a false start in relay
-M : if an arrival or a start was given manually through the keyboard

- *: if a time was introduced through the keyboard (INSERTION)
-D: (program AUTO FD) to mark the starting block lane when the difference between the starting block time and the touch pad time is printed.
- T : printed on the MANUAL program if a time is missing from one or more push buttons.

Timing Function

For an easy understanding the functions are divided into 6 groups.

1. Initialization
2. Race definition
3. Control and printing of the race
4. Anticipated intervention
5. Intervention a posteriori
6. Display of the results

1. Initialization

Choice of the configuration

board:	- 1 line (Best Time) -2 to 10 lines display in lane or ranking order
number of lanes:	1 to 10
Resolution:	$1 / 1000$ or $1 / 100 \mathrm{sec}$. If we choose $1 / 1000$ sec., we have: $1 / 1000$ printing 1/1000 display 1/100 scoreboard display (FINA) - Swimmer ex-aequo if their times are the same to $1 / 1000$ relay error if starting block time +9 ms is less than touch pad time
date:	day/month/year (3×2 figures)
time:	synchronization of the device with the time of day

2. Race definition

Program AUTO

Input on Harness module:

- No. 1 touch pad
- No. 2 manual push buttons (back up)
- No. 3 unused

Official time input No. 1

Program AUTO FD

Input on Harness module:

- No. 1 touch pad
- No. 2 manual push button (back-up)
- No. 3 starting block

Official time input No. 1
Input 2 and 3 are not printed if time difference with input 1 (touch pad) is over 2 seconds.

Program MANUAL

Input on Harness module:

- No. 1 push button No. 1
- No. 2 push button No. 2
- No. 3 push button No. 3

Official time:
with 3 manual push buttons: median time
with 2 manual push buttons: 2nd time
Arming time:
1 to 99 sec . or no automatic arming
Race number:
3 digits
Heat number:
2 digits
heat number automatically increased
Number of laps:
1 to 100 , number of laps automatically counted.

3. Control of the race

Start:

Start given by starting pistol, printing of the time of day

Intermediate time:

Printing of official times in chronological order
all times are memorized, included backup times
LCD display:

- lap number
- lane number of the leading swimmer
- touch pads control

False start in relay:

at each change, printing of the time difference between touch pad and starting blocks
(if false start, negative time)

Final arrival:

printing of official effective times in chronological order

LCD display:

- lap number
- lane number of the leading swimmer
- touch pads control (end of race)

Modification of parameters chosen:

All following parameters can be modi-
fied during the race:

- lane used
- length of the race
- arming, etc.

Memory:

- of all events which happened during the race, including events which happened when the lanes were not armed or when the race was normally over.
The times are not printed but they are retrievable for corrections later on.

4. Anticipated corrections

Steps the operator can take to keep the
OSM6 from recording erroneous information

- arming, disarming of the lane
- definition of the race (all parameters can be modified)
- manual arrival impulse given through the keyboard

5. Intervention a posteriori

During and after the race, but after the event happened, the operator can make certain corrections.

These functions are:

erasure:

- of an unnecessarily recorded time with restitution of number of laps and arming conditions.
modification:
- replacement of a memorized time by another memorized time or modification of a time through the keyboard
insertion:
- insertion of a missing time which will be inserted according to chronological order.
This operation increases the number of laps.
missed start:
- equipment was not ready for the next race; the starting time can be recovered, therefore timing will be successful.
false start:
- erasure of a starting time when the race is cancelled
On the printer, all edited times are followed by a remark.

6. Transmission

Display on scoreboard according to the board chosen:

1-line board (BEST TIME)

- running time
- display of best time after every lap
- sequential display of all times in lane or ranking order for final results.

2 to 10-line boards

- display of all times in lane or chronological order
- intermediate times during 10 seconds
- running time on the first line with display of $1 / 10 \mathrm{sec}$. however only during the race (except UNT 4 which displays seconds only).

Control and printing after the race

Printing

- final ranking
- final ranking with back up times
- ranking in arrival order, with false start indication
Ranking can still be printed during the next race. No intervention is possible once the new race has been started.

Omega Electronics SA

Case postale 6
rue Stämpfli 96
CH-2500 Bienne 4, Switzerland
phone 032429211 tx 349507 OE
telefax 032413321

The techniques involved in the development of the instruments described herein are continually undergoing improvement. For this reason the company reserves the right to modify products without notification.

Iransmission_qrotocol_for_oIR=7_Omeqa_Timing_Unit_for_skig

1. Technical characteristics for output "SCB" (scoreboard) and "DH" (datahandling).

- 20 mA current 100 p
- 9600 baud
- ASCII code (1 START EIT, 7 DATA BITS, 1 PARITY BIT, 1 STOP BIT)

Information_output_"SCB".

A message is sent every $1 / 10 t h$ of a second. The different messages consists of 1 ine of 24 characters (control and information) and can be one of the following types:

- CLEAR: Eend "SP" for all information digits. The clear-line is sent once every $1 / 10 t h$ of a mecond. Clear is sent at the start and on command from the operator.
- RUNNING TIME : This message contains the start-number of the participant (runmer) expected at the arrival-line (under control by the operator). Dutput every $1 / 10 t h$ of a second.
- STOP TIME : This message contains the start-number and the effective t ime for the participant at the intermediate or arrival time. This message is output only once.
2.2_Output_information "scB".

CLEAR:

RUNNING TIME:

STOP TIME:

SOHDCA	Time status 51812	6	[${ }^{\text {HS }}$ (Hame ${ }^{\text {a }}$	10^{2}	t-k				$\begin{aligned} & \text { separr } \\ & 0 \text { ersed } \end{aligned}$	Minates b' orsfibouss	$\begin{aligned} & \text { Separy } \\ & \text { Dorsply } \end{aligned}$	becouds 10'arspl 10%	$\begin{gathered} \text { xper } \\ 0 \end{gathered}$	Millisedouds 10^{2} lóasplisionst		EOL

Remark: If the start-number expected at the arrival has not yet started, the running time is replaced by the stop time : 0.00
3._Information output_"DH"

Identical to the output "SCB".

