Instruções de Alinhamento

1 Equipamento de alinhamento

PM5518 (gerador de sinal de vídeo)

K-7253 (Gerador de sinal VGA)

CA100 (balanceador branco)

VG-849

2 Fluxograma de alinhamento

O fluxograma de alinhamento é mostrado na fig-1

3 Ajustes da unidade

3.1 Ajuste de placa de AF

Ajuste o potenciômetro VR9002 da placa de força, meça o ponto de teste TP1 (12VAMP) da placa de AF para 14 V±0.05 V.

3.2 Ajuste da placa digital

3.2.1 Ligue a placa digital, placa de botões e placa de AF, ligue a unidade. Verifique se a imagem está normal.

3.2.2 Entre no modo do menu da fábrica (modo de serviço)

Pressione o botão MENU, pressione o botão de números: 1? 9? 7? 9. Entre no menu de fábrica e, então use VOL+/-, selecione o valor do item e CH+/- altere-o. Pressione o botão MENU para sair do menu de fábrica.

3.2.3 Ajuste do canal de VGA

3.2.3.1 Modo do canal VGA pré-ajustado

Entre o sinal VGA de K-7253. Selecione 640*480/75Hz/85Hz, 1024*768/70Hz/75Hz/80/Hz/85Hz, 800*600/75Hz/85Hz, 1280*1024/60Hz/75Hz e 1600*1200/60Hz, respectivamente. Pressione "AUTO" para fazer o auto-ajuste até que a tela se encha com a imagem.

3.2.3.2 Ajuste ADC do canal VGA

Entre o sinal de 16 graus de densidade de cinza para VG-849 TIME921, PATTERN889. Entre o menu de fábrica. Selecione a auto-correção ADC.

3.2.3.3 Ajuste do balanço branco do canal de VGA

a. Entre um sinal de escala de cinzas de 8 níveis K-7253 de TIME303 (640*480/60Hz/) e

PATTERN4718. Entre no menu de ajuste do balanço branco. Ajuste o terceiro e sétimo níveis usando o balanceador branco.

b. Selecione 9300k do "modo", fixed offset_R em 128, ajuste o offset_G e offset_B. Deixe a coordenada de cor do terceiro nível como 285 e 290 e seu brilho como 4.5-5nit. O fixed gain_B em 128, Ajuste o gain_R e gain_G. Deixe a coordenada de cor de nível sete como 285 e 290. Ajuste o offset_G, offset_B, gain_R e gain_G repetidamente, até que o valor da escala de cinzas de dois níveis fique em 285 e 290.

c. Selecione 12000k de "modo", fixed offset_R em 128, ajuste offset_G e offset_B, deixe a coordenada de cor do terceiro nível como 270 e 283 e seu brilho como 4.5-5nit. O fixed gain_B em 128. Ajuste o gain_R e gain_G. Deixe a coordenada de cor do sétimo nível como 270 e 283. Ajuste offset_G, offset_B, gain_R e gain_G repetidamente, até que o valor da escala de cinzas de dois níveis seja 270 e 283.

Nota: após o ajuste do balanço branco, ajuste o item 3.2.3.2, autocorreção ADC novamente.

3.2.4 Ajuste do canal AV/TV

3.2.4.1 Ajuste de sub-brilho e subcontraste

Entre o sinal da barra de cores AV (PM5518 COLOUR BAR 100%) para o terminal de VIDEO, ajuste os itens de sub-brilho e subcontraste do menu de fábrica. Saia do menu de fábrica e observe o efeito. Repita o ajuste até conseguir o melhor.

3.2.4.2 Ajuste de balanço branco do canal AV/TV

a. Entre o sinal AV (PM5518, sinal de escala de cinzas de 8 níveis). Entre no menu de ajuste do balanço do branco; ajuste o terceiro e sétimo níveis usando o balanceador do branco.

b. Selecione 9300k de "modo", fixed offset_R em 128, ajuste o offset_G e offset_B. Deixe a coordenada de cor do terceiro nível como 285 e 290 e seu brilho como 4.5-5nit. O fixed gain_B em 128. Ajuste o gain_R e gain_G. Deixe a coordenada de cor do sétimo nível como 285 e 290. Ajuste o offset_G, offset_B, gain_R e ganho_G repetidamente, até que o valor da escala de cinzas de dois níveis fique em 285 e 290.

c. Selecione 12000k de "modo", fixed offset_R em 128. Ajuste o offset_G e offset_B. Deixe a coordenada de cor do terceiro nível como 270 e 283 e seu brilho como 4.5-5nit. O fixed gain_B como 128. Ajuste o gain_R e gain_G. Deixe a coordenada de cor do sétimo nível como 270 e 283. Ajuste o offset_G, offset_B, ganho_R e o ganho_G repetidamente, até que o valor da escala de cinzas de dois níveis fique em 270 e 283.

3.2.5 Ajuste do balanço branco do canal YPbPr

a. Ajuste de ADC do canal YPbPr: entre o sinal de barra de cores VG-849 TIME976 e PATTEN984 SMPTE. I. Entre no menu de fábrica, auto-correção ADC.

b. Ligue o sinal YPbPr do sinal K-7253 ao terminal YPbPr. Entre a escala de cinzas de oito níveis do sinal TIME380 (480i) PATTERN471. Entre no menu de ajuste do balanço branco. Selecione 9300k do "modo", o fixed offset_R em 128. Ajuste o offset_G e o offset_B. Deixe a coordenada de

cor do terceiro nível como 285 e 290 e seu brilho como 4.5-5nit. O fixed gain_B em 128. Ajuste o ganho_R e o ganho_G. Deixe a coordenada de cor do sétimo nível em 285 e 290. Ajuste o offset_G, offset_B, ganho_R e o ganho_G repetidamente, até que o valor da escala de cinzas de dois níveis seja 285 e 290.

c. Selecione 12000k do "modo", fixed offset_R em 128. Ajuste o offset_G e offset_B. Deixe a coordenada de cor do terceiro nível como 270 e 283 e seu brilho como 4.5-5nit. O fixed gain_B em 128. Ajuste o ganho_R e o ganho_G, Deixe a coordenada de cor do sétimo nível em 270 e 283. Ajuste o offset_G, offset_B, ganho_R e o ganho_G repetidamente, até que o valor da escala de cinzas de dois níveis fique em 270 e 283.

d. Entre o sinal da escala de cinzas de 8 níveis do modo TIME392 (480p), TIME394 (720p) e TIME396 (1080i), repetidamente, até que a segunda coordenada de cores fique em 285 e 290 e o brilho em 2.3nit.

3.2.6 Ajuste de balanço do branco do canal de HDMI

Entre o sinal VG-849 (1080i) e 720p HDMI. Selecione 9300k do "modo". O fixed offset_R em 128. Ajuste o offset_G e o offset_B. Deixe a coordenada de cor do terceiro nível em 285 e 290 e seu brilho como 4.5-5nit. O fixed gain_B em 128. Ajuste o ganho_R e o ganho_G. Deixe a coordenada de cor do sétimo nível em 285 e 290. Ajuste o offset_G, offset_B, ganho_R e o ganho_G repetidamente, até que o valor da escala de cinzas de dois níveis fique em 285 e 290.

Selecione 12000k do "modo". O fixed offset_R em 128. O ajuste do offset_G e o offset_B. Deixe a coordenada de cor do terceiro nível em 270 e 283 e seu brilho como 4.5-5nit. O fixed gain_B em 128. Ajuste o ganho_R e o ganho_G. Deixe a coordenada de cor do sétimo nível em 270 e 283. Ajuste o offset_G, offset_B, ganho_R e o ganho_G repetidamente, até que o valor da escala de cinzas de dois níveis fique em 270 e 283.

3.3 Verificação de desempenho

3.3.1 Função de TV

Entre no menu de pesquisa ? pesquisa automática. Ligue o terminal de RF-TV à fonte de sinal central e verifique se há canais a serem saltados.

3.3.2 AV/S, terminais YPbPr e HDMI

Entre o sinal de AV/S, HD e HDMI. Verifique se está normal.

3.3.3 Terminal VGA

Ligue ao Terminal VGA. Entre o sinal de formato VGA de 640 X 480 em 60 Hz. Verifique se a imagem está normal. Se a imagem ainda tiver interferência, faça o ajuste automático da imagem até que fique normal.

3.3.4 Terminal DVI

Insira o Terminal DVI, introduza um sinal de 640 X 480 de 60 Hz e Verifique se a imagem está normal.

3.3.5 Verifique o canal de áudio

Verifique o alto-falante e fone de cada canal.

3.3.6 Pré-ajuste anterior na fábrica

ltem	Ajuste	Item	Ajuste	Item	Ajuste
Modo imagem	Esportes	Idioma OSD	Inglês	BALANÇO	+00
Modo som	NOTÍCIAS	Temperatura da Cor VGA	Quente	Ligar modo	Desligar
TELA	Encher toda				

Método de atualização do software

As etapas de atualização do software são as seguintes:

1. Selecione um cabo de conexão serial e um cabo de conexão VGA e, então, ligue-os por meio de um painel de conexões;

2. Use um cabo serial para ligar o PC ao painel de conexões e desligue o TV;

Abra o arquivo de atualização do software e dê um clique duplo no ícone FlashUpgrader (Windows 2000/XP/NT)

As interfaces a seguir aparecerão após a execução do programa:

Com base nos recursos do computador, configure a porta serial (COM Port). Selecione a porta serial correspondente

(Se não estiver habilitada para FLASH WRITE, mude para outra porta). A taxa de transmissão (Baud) selecionada deve ser 115200. Selecione então "Reset Target After Download". Clique no botão FLASH. Estará pronto para ser executado. Para outros ajustes, consulte a figura acima (default do sistema, normalmente não precisa ser alterado). Ligue o TV. O programa FLASH WRITE começará a ser executado;

Itrette	r [C 19100951Desktop1	Charter
71 stà	Trade of	쾨
	File liters fait Longth	Excaection
1	D flacker bes 0x00100 Cutton 13616	Zielal -
orks	single her Oc10000 Ow14745 823253	DW Fiel
23	flass con	1:00mm
99	F failures flath for Fish C Ve	ent C tran
8.6	Beers Time 3000 Breaking, sing	14.921
a 14	E Rotate Ba Complete Dates 152575	10

Após o FLASH WRITE estar concluído, o botão "Cancel" começará a piscar. Desligue então a fonte de alimentação principal e poderá ligá-la novamente.

Nota: não desligue ou ligue o TV durante a execução do FLASH WRITE. Caso contrário, a regravação do flash será impossível.

Diagrama de bloco

Análise dos Princípios Operacionais da Unidade

1. Placa de TV

Este conjunto comporta todo o sistema para o sintonizador integrador (inclui circuito de amplificação de alta freqüência e freqüência intermediária). A antena recebe o sinal e envia ao sintonizador. O sintonizador é o N602 PW118 MCU controlado (por SDA, SCL). Selecione o canal apropriado, ative o modo correto. Após a amplificação de alta freqüência e de freqüência intermediária, ative a saída dos sinais de áudio e vídeo.

A saída do sinal de áudio pelo sintonizador é enviada diretamente à chave AV (M52797). Selecione este sinal e o sinal de áudio do AV1, AV2, YPbPr. Ative a saída do sinal de áudio do canal selecionado e separe-o em duas vias; uma após amplificar 6 db é AU OUT; a outra é enviada ao processador de áudio e som IC N907 R2A15900. No R2S15900, tal sinal de áudio e o sinal de VGA, VGA, HDMI, YPbYr1 são selecionados por MCU, e a saída do sinal é através do controle de volume e grave-agudo, para ser amplificada pelo amplificador tipo D. Finalmente, o sinal sai para a caixa acústica e representa o som. Ao ligar o fone, a entrada do fone com chave envia o canal esquerdo/direito da saída de R2S15990 ao amplificador de potência do fone N908 NJW1109. Após a amplificação, ao usar a saída de fone, ative a saída do fone para ouvir (o fone pode ser selecionado a pedido do cliente).

O amplificador de som MPS7720 é o amplificador de potência monocanal tipo D de alta eficácia. A potência de saída pode atingir 20W sem aletas radiadoras, dotada da função protetora de sobrecorrente e sobreaquecimento. Quando a entrada direta ao terra estiver em curto, poderá proteger automaticamente e interromper a saída. Se não estiver em curto, poderá retomar a operação normal. Portanto, ao instalar e ativar o cabo de áudio (não sugerir tal operação), se o aparelho não tiver som algum devido a curto acidental, voltará ao normal tão logo for reativado.

2. A parte de vídeo

A saída do sinal de vídeo do sintonizador é enviada à chave AV M52797 (N903). A entrada do sinal de vídeo de AV1 e AV2 segue para o M52797 (N903), e é ativada para ganhar dois grupos de saída de vídeo. Uma saída de grupo de sinal de vídeo é enviada ao terminal AV-OUT com sua saída de som e é tratada como saída AV OUT. Outra saída de grupo do sinal de vídeo pe enviada a PW2300 e é feita a decodificação do vídeo. Então, o sinal de vídeo do S-VIDEO, YpbPr1, YpbPr2, VGA é enviado ao PW2300 (N700) sincronicamente. Todos esses sinais de vídeo serão enviados a este chip para fazer a decodificação do vídeo ou a conversão de AD. Ocorre então a saída do sinal RGB digital de 24 bits e o sinal de sincronismo correspondente. O PW2300 (N700) completa a maioria das funções do filtro 3D comb, da chave de canais, separação Y/C de 5 linhas, a decodificação de cores, etc. O sinal RGB digital de 24 bits e o sinal de sincronismo correspondente são enviados pelo PW2300 (N700) e fornecidos ao chip da próxima etapa PW118 (N602). O sinal HDMI é fornecido ao AD9398 (N208) para fazer a decodificação. Ao mesmo tempo, o sinal digital de 24 bits e o sinal de sincronismo correspondente são fornecidos ao PW118 (N602) para fazer o processamento. O PW118 é o novo chip de alta potência da Pixelworks para manipulação de imagens. O sinal RGB digital de 24 bits e o sinal de sincronismo correspondente fornecidos pelo AD9398 e PW2300 serão fornecidos a este chip para fazer a manipulação de imagens. Além da função de entrelaçado para linha a linha, este chip ainda inclui a função de refinamento de imagem (image enhancement), etc. O PW118 pode fazer o chaveamento de formato para os diferentes sinais de entrada de formato (por solicitação do cliente, seleciona a função SCALER), e faz a correspondência com a solicitação de formato da tela, e produz o sinal de diferença de baixa tensão do RGB LVDS digital, que é então enviado à tela, fazendo seu acionamento. O PW118 é igualmente a CPU principal. O procedimento é armazenado no flash externo MX29LV800 N404. A atualização do software da RS-232 é a atualização do conteúdo armazenado do N404 pelo PW118.

3. Função do CI, diagrama de bloco interno, introdução dos pinos

3.1 PW2300

O PW2300 é parte do chip de processamento de vídeo "front-end" que integra um decodificador de vídeo multisistema de alta potência a um módulo ADC de alta velocidade. Todos os sinais de entrada de vídeo (exceto o sinal HDMI) são introduzidos neste chip até a chave AD e de decodificação de vídeo. O sinal RGB digital de 24 bits e o correspondente sinal de sincronismo são fornecidos ao N602 PW118 para fazer o processamento. O PW2300 completa principalmente as funções do filtro comb. de 3D, da chave de canais, separação Y/C de 5 linhas, a decodificação de cores, etc. Faz a conexão do chip SDRAM externo N703 HY57V161610E, tratado como memória interna para auxiliar a operação do PW2300.

Diagrama interno de blocos do PW2300:

Diagrama da pinagem do PW2300:

5/6	5/8	542	38N	TUCK	09012	0908	ALTHEN	0901	DOVET	DOFE4	DORE?	D00E2	DOGES	DOGES	DOGET
SABOTIKL	SDA	51	NC	MC	0900	07409	A.TNS	DOMS	DOPED	DOMES	DORES	DOEL	DOODA	DORES	DOBND
REAT	ASPECTO	ASPECTO	ASPECTI	73400	09014	GPIC10	ALTHS	9902	XTINT	DOFE2	DORES	0000	DOGED	DGEE3	03862
RESET_N	NC	NC	NC	(LMP	OPICIS	OPICH	A.NS	ALTELD	VOID	V33D	VIIID	1000	DOBES	00865	DOB54
NC	NC	NC	avo	VIID	V154	VIEP	VBA	V00A	040	VIIID	VIID	1930	DOBET	DOFLD	005
NC	NC	NC	940	VIEL	940	040	940	90	940	040	90	VORI	0046	DGAHS	DOPEN
NC	NC	NC	VIDA	940	VIE	010	VXXA	90	940	010	VIIII	VOID	03900	DOCLAT	0001/2
040	040	30	AEV	VIIP	040	00	90	96	90	040	90	VIII	009800	DORCE	DORCH
V184	VISA	940	940	VIRP	VISP	00	90	90	940	040	VIND	1900	DOROS	03905	DORCA
GRN1	REDI	RLT	940	910	040	90	00	940	90	040	90	1000	DGROP	09908	DORCE
5001	NC	NC	VERMON	VISIOC	VIDADC	VENICE	VISHIC	00	VED	00	VIIID	VIIIO	00002	00001	00000
BUH	NC	NC	VEMOC	VONCE	VONOC	ACEV	VBA	940	V680	VIIID	VIIID	00008	03665	00004	09908
FED2	OPAQ	9032	8.1.2	FBD1	F500	F905	F907	F9C/A6	FSEAVAN	F5A00	FSAt	FSA0	00809	00008	DOOCP
REDO	090	8000	8118	P900	F902	FSD4	FSD6	FSWE	FSRAS	FSBANKI	F540	FSA2	00802	DOBOI	DOBCO
REDA	ORM	9004	BLIM	PSDN	FSD12	FSD10	FIELE	PSOLK	FSA9	PSIT	FSI6	FSM	DOBOS	DOEDA	DOBCD
HBt	152	V51	V52	F5015	FBCND	FSD11	FSDI	FSDQM	FS411	F548	F546	DGBOB	03808	03907	DOBOS

Pino	Nome	Função	Pino	Nome	Função
A4	XIN	Entrada do Resonator	N4	B_1	AV1 entr. azul
A5	XOUT	Saída do Resonator	P1	R_2	AV2 entr. verm
B2	SDA	Dados do barramento I ² C	P2	B_2	AV2 entr. verde
B3	SCL	Relógio do barramento l ² C	R3	CVBS_SOG1	Saída do sinc. verde múltiplo T do sinal de vídeo
K2	VGA-R1	VGA vermelho	R4	C_1	Entrada do sinal de cor S-VHS
K1	VGA-G1	VGA verde	B9	GVB1	Intervalo de apagamento vertical
M1	VGA-V1	VGA azul	E16	G_VS	Saída do sinc. vertical
T1	VGA_H	VGA Canal 1 sinc. vertical	F14	G_HS	Saída do sinc. horizontal
Т3	VGA_V	VGA Canal 1 sinc. vertical	F15	G_AHS	Sinc. horizontal bruto
N1	R_1	AV1 entrada verm.	G15	G_DLK	Saída do relógio
N1	G_1	AV1 entrada verde	B10-B12 A10-A12 C11-C12	GRE (0-7)	Saída de dados verm.
P3	SOG_2	AV2 entrada sinc. verde	C13 C14 B13 B14 A13-A16	GGE (0-7)	Saída de dados verde
P4	G_2	AV2 entrada azul	B15-B16 C15-C16 E14	GBE (0-7)	Saída de dados azuis

Descrição da pinagem do PW2300:

3.2 AD9398

Chip da interface multimídia de alta definição, AD9398 HDMI (High-Definition Multimedia Interface). Esta interface é o padrão de interface digital que foi introduzido rapidamente. O uso desta interface é a transmissão de sinal eletrônico de vídeo da definição padrão e alta definição, e esta interface fornece a tecnologia de proteção de conteúdo. O AD9398 também suporta HDCP (High bandwidth Digital Content Protection). O AD9398 inclui um módulo de interface HDMI 1.0 e um módulo de HDCP. O sinal de HDMI introduzido será enviado à interface deste chip para fazer a decodificação. O sinal de RGB digital de 24 bits de simultaneidade e os sinais de sinc. correspondentes são fornecidos ao N602 PW118 para fazer o processamento. Além disso, o módulo HDCP faz a comunicação através do DDCSDA, DDCSCL e das fontes de sinal de HDMI para fazer a decodificação de uma memória extra N207 24LC168SN que armazena a chave secreta de decodificação exigida pelo HDCP, e faz a comunicação através do pino MCL, MDA do AD9893.

Diagrama interno de bloco do AD9880 (AD9398):

Descrição da pinagem do AD9880 (AD9398):

Pino	Nome	Função	Pino	Nome	Função
2-9	GGE(0-7)	Chavear saída	44	RXC+	Entrada de vídeo digital DVI
12-19	GBE(0-7)	Chavear saída	49	DDC_CLK	HDCP (relógio de dados serial)
92-99	GRE(0-7)	Chavear saída	50	DDC_DATA	HDCP (E/S de dados seriais)
20,21	MCLK	Controlar saída do relógio	51	MCL	HDCP relógio de dados seriais
22	12S_SCR	Saída do relógio da série áudio	52	MDA	HDCP E/S dos dados da série de controle
23	12S_WS	Saída de dados do relógio do barramento	82	SCL-1	Relógio de dados da série
27	12S_SD	Saída de dados do áudio do barramento	83	SDA_1	E/S dos dados de série
34	RX0-	Entrada de vídeo digital DVI	84	G_FIELD	Saída do campo de paridade
35	RX0+	Entrada de vídeo digital DVI	85	G_VS	Saída do sinc. de dados vert.
37	RX1-	Entrada de vídeo digital DVI	86	G_VHS	Saída de sinc. verde

3.3 PW118

O PW118 é o novo chip de alta potência para manipulação de imagens da Pixelworks. O sinal RGB digital de 24 bits e o sinal sinc. correspondente, fornecidos pelo AD9398 e PW2300, serão introduzidos neste chip para fazer a manipulação da imagem, e o sinal LVDS é fornecido para ativar a tela diretamente. Além da função de entrelaçado para linha por linha, este chip ainda inclui a função de refinamento de imagem (image enhancement), etc. Este chip é a CPU principal deste aparelho. Assume todo o controle, exceto quanto ao controle da fonte de alimentação, incluindo o controle de cada operação de chip na placa principal (ex.: a manipulação da imagem, a chave de canais, o display de imagens, etc.), o controle de botões, dispositivo remoto e de som, etc., e a CPU assistente N401 ATMEGA8L controlam principalmente a fonte de alimentação, incluindo a reserva e o botão de controle do dispositivo remoto para ligar o aparelho, etc. A interface do menu é também gerada pelo PW118. A memória externa do PW118 N402 AT24LC32A armazena os dados correspondentes. O chip Flash N404 MX29LV800 armazena o procedimento correspondente. O chip DDRSDRAM (N501 K4D553238F-JC) auxilia a operação do PW118 como memória externa.

Diagrama interno de blocos PW118:

Diagrama da pinagem:

Ľ.

	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	15	20	21	22
A	1087	NE	145	NOS	NORES	16	AR	A21	W	- 18	A9	40	ROWNE	214	215	18	MAKE	NUCE	MCAS	-38400	V0005	100483
b (REPORT.	15004	100382	NOISS	100154	NC.	. WE	434	ROUDE	AZZ	A18	1/2	683	319	0.01	00	80	MOS-	146	1495	10034	040
C	101	102	92	NRO	NORCE	10402	AH	A6	ALC	AH	N	.44	cai	10	101	(8)	12	1003	100.8	9027	MD23	NRCEM
D	00905	H0022	NOS	NOSED	80	10857	All:	Att	- AlT	A15	16	At	00	04.	36	\$i	82	M004	M036	NEWS	MD21	NOIL
E	10000	N01C3	N0823	100005	110388	HOLES	V0005	VD001	AZI	V0018	VODIE	AL	100025	10025	16035	V018	10025	M030	M036	HDNC	10221	MAG
•	HEOCT	10000	100300	100000	HOGEI	VODIN											VECUS	VEEDS	M325	V0065	MD17	847
1	84803	80	48536	\$453.06	35		-											1003	MD268	- MICCOO	1040	MRD
ŧ	10902	NECH	100	NUCC	VODES										-		1	VICE	MURE	MU18	10005	VENKI
1	1045	NETOS	ROPS	86938	40034				940	.940	995	20	90	60	1			1003	VDETS	DHG .	1644	10025
1	100005	BICST	NOCHP	N0006	10501				90	96	- 50	.90	9.0	90				MAIQ	1440	100	MD-E	10011
	ICAHS	P6902	10/01	NOUX	NIPDI				540	340	340	010	0.0	66			- 1	1006	1642	1441	VD11	MOS
١Į	.70	INVO!	PIDING	NOTLD	VCD18				090	040	010	010	010	010				NENIO	MDRO	MOTO	VID/13	MARKED B
i [10306		NOM	HORIZ	VODHE				340	OND-	100	0.0	040	640				VDEX	(thip	100	MONT.	MINU
ŧ[10302	NUCL	PERMIT	07.94	10108				340	UNE:	. itidi	1140	0.00	810				VDE28	NEY	1003	Model	MODEL
1	97	8161	192-	NPEN	VODES						1111		10100		50 - E			VDC05	MEX	HE4	1004	MDE
1	N155	N164	10.00	11.09	10003													10075	VOITH	HDC.	1001	MD2
I	11158	N 52	010.8	MIS	10400							_		_	_		00000	640	VAAN	MOVER.	HON:	10025
1	M ED	14.58	190	80.06	4002	4002	H2	OND	VODIE	VOD'E.	VODE	V0030	10038	0.065	100015	10046	100400	016	DVS	DEEK	DBEI	MCR.
1	M-73	HE FA	BICMP	M-12	Mr 87	GRD		GND	POREAG	PORTA?	FORTH	POETING	TÍD	0,988	DOH!	1002	CE18	OBIT	DBBS	0.0460	1046	restwood
t (- 80	195	REFLE	10.101	1016	16	NPPD.	1dei	POSter	PORTE	PORTE	HORE TO A	HDC)	\$1617	0061	2011	1818	1881	2006	2000	1010	13:
A	IN Arts	8160	16.97	80.	0018	ADKS	10954	101215	POND43	PONTA2	PORTES	PORTES	INCOME.	0854	0415	1595	. D083	6590	DEN	0884	(TAGEE)	13
B	NIGST	80/5	8103	利用	16754	1016	ADC/	0/19:100	PORTEN	PORTAG	POETAL	PORTA	INC/18	0.000	1396	0052	0652	3290	0672	0003	405240	TREFY
	1	2	3	4	5	6	7	8	. 9	10	11	12	13	14	15	16	17	18	19	20	21	22

3.4 M52797

O M52797 é um chip de chaveamento AV controlado pelo IIC. Este chip inclui 4 grupos de entrada de vídeo e 4 grupos de entrada de áudio, 2 saídas de vídeo e 1 saída de áudio.

Diagrama interno de blocos do M52797:

Diagrama da pinagem:

Descrição da pinagem do M52797:

Pino	Função	Pino	Função
3	YPbPr2_L entrada de áudio	20	Saída de vídeo para o PW2300
5	YpbPr2_R entrada de áudio	22	Saída de áudio da trilha direita
6	AV1_L entrada de áudio	23	Saída de vídeo para a interface AVOUT
7	AV1 entrada de áudio	24	Saída de áudio da trilha esquerda
8	AV1_R entrada de áudio	25	TV_R entrada de áudio
9	AV2_L entrada de áudio	26	TV entrada de vídeo
10	AV2 entrada de áudio	27	TV_L entrada de áudio
11	AV2_R entrada de áudio		

3.5 R2S15900

O R2S15900 é um chip de processamento de áudio que faz o chaveamento do áudio, processamento do som e ajuste do volume, controlado pelo barramento IIC. Diagrama interno de blocos:

Descrição da pinagem do R2S15900:

Pino	Função	Pino	Função
2,27	Trilha esquerda e direita do M52797	5,24	Trilha esquerda e direita do YPbPr1
3,26	Trilha esquerda e direita do HDMI	11,19	Trilha esquerda e direita da saída de áudio
4,25	Trilha esquerda e direita do VGA		

3.6 LA72700 (DECODIFICADOR ESTEREO/SAP):

Descrição da pinagem:

Pino No.	Nome	Descrição	Pino No.	Nome	Descrição
5	PISIF	Entrada IF de áudio	25	R OUT	Saída de áudio canal direito
11	SDA	Barramento I2C	26	LOUT	Saída de áudio canal esquerdo
12	SCL	Relógio I2C	31	VCC	9V

Diagnóstico e manutenção do painel

1. Função de bloco do painel

Placa da fonte de alimentação, placa lógica, placa do drive X, placa do drive Y, BUFFER lógico (E, F, e G) e BUFFER Y (superior e inferior) do painel PDP.

* **Placa da fonte de alimentação**: para fornecer alimentação elétrica à tela, outros módulos funcionais na tela, nossa própria placa principal, e placa de processamento das freqüências de vídeo.

* **Placa de drive X**: para produzir e fornecer sinal de drive para o eletrodo X de acordo com o sinal de seqüência de tempo enviado pela placa lógica.

* **Placa de drive Y**: para produzir e fornecer sinal de drive para o eletrodo Y de acordo com o sinal de seqüência de tempo enviado pela placa lógica.

* **Placa lógica:** para processar o sinal de imagem enviado pela placa principal, para produzir sinal de endereçamento e fornecer sinal de drive para as placas de drive X e Y.

*Placa do BUFFER lógico: para converter o sinal de dados e sinal de controle enviados pela placa lógica nos sinais exigidos pelo COF.

*Y BUFFER board: para transmitir o sinal de escaneamento da placa do drive Y para a tela, que se divide nas partes superior e inferior.

***COF:** para converter o sinal enviado pela placa do BUFFER lógico em sinal de endereço usado pela tela.

2.Diagnóstico de problemas:

2.1 A tela não tem brilho:

a. Verifique se a tomada da fonte de alimentação da placa dos filtros de força para a placa da fonte de alimentação está bem inserida no encaixe. Se não estiver, encaixe-a corretamente.

b. Verifique se o fusível da placa de alimentação não está queimado. Se estiver, troque-o por um novo.

c. Remova a placa principal e a placa de processamento de freqüências, aterre o pino 4

POWER_ON/OFF do soquete CN802 da placa da fonte de alimentação;

e então empurre a chave deslizante SW2001 da placa lógica para os modos internos (1, 3 para cima e 2, 4 para baixo) a partir dos modos externos (1, 2, 4 para cima e 3 para baixo).

Ligue a força e veja se a tela está acesa. Se a tela puder fornecer um sinal de campo normal e completamente branco, então o problema estará em nossa placa principal ou placa de processamento de freqüências de vídeo, que será tratada separadamente.

d. Se a tela não estiver acesa, então substitua primeiro a placa da fonte de alimentação para ver se o problema fica resolvido.

e. Se o problema persistir após a substituição da fonte de alimentação, então o problema está na tela. Substitua toda a tela para tratamento.

2.2 Aparecerá na tela uma linha ou várias linhas não acesas.

Verifique se a tomada entre a placa de drive Y e o BUFFER Y está bem encaixada. Se não estiver, corrija o problema, encaixando-a corretamente. Se estiver, então substitua o BUFFER Y (superior

e inferior) com relação à parte superior e inferior da linha escura na tela.

2.3 Aparecem na tela uma ou várias linhas horizontais que são muito mais brilhantes que as linhas horizontais restantes na borda:

Verifique se o soquete entre a placa de drive Y e o BUFFER Y está bem encaixado. Se não estiver, encaixe-o bem. Se estiver bem encaixado, então substitua o BUFFER Y (superior e inferior) com respeito à parte superior e inferior da linha escura na tela.

4. Aparecerá na tela uma linha vertical não acesa ou um bloco vertical inteiramente apagado.

a. Se houver uma linha vertical não acesa, então haverá um problema com o COF.

b. Se for um bloco vertical inteiramente não aceso, verifique primeiro se a tomada de conexão entre o COF e o BUFFER lógico tem algum problema. Se não tiver, verifique se as tomadas de conexão entre o BUFFER lógico e a placa lógica está normal. Se estiver, substitua o BUFFER lógico. Finalmente, se o problema ainda persistir após a substituição, substitua então a placa lógica.
5.Aparecerá na tela um sinal de uma só cor e uma ou várias linhas verticais brilhantes de outras cores:

a. Se houver uma linha vertical brilhante ou outras cores, então o problema estará no COF ou na tela.

b. Se houver um bloco vertical inteiro de outras cores, verifique então primeiro para ver se o soquete de conexão entre o COF e o BUFFER lógico tem algum problema. Se não houver problema, verifique se o soquete de conexão entre o BUFFER lógico e a placa lógica está normal. Se estiver normal, substitua então o BUFFER lógico. Se o problema ainda persistir após a substituição, substitua então a placa lógica. Finalmente, se o problema ainda existir, o problema deverá estar no COF.

6. Aparecem na tela pontos ou blocos brilhantes anormais que são diferentes do que está descrito acima:

a. Verifique se o soquete de conexão entre o COF e a placa de BUFFER lógico está bem encaixado.

b. Substitua a placa do BUFFER lógico. Se o problema não estiver resolvido, substitua então a placa lógica. Se o problema ainda persistir, então o problema estará no COF.

Diagrama de Fiação

Lista de Conjuntos

Peças No. (203-PS42T80-23)	Descrição
SPS42T80-23A10	Software PW118
SPS42T60-01B10	Software MEGA8
SPS42T60-01C10	Software HDMI EDID
SPS42T60-01D10	Software VGA EDID
301-PPS42T8-03A	Controle remoto
615-10412-03	Conj. do suporte do painel (DZ-1042)
615-20543-00	Conj. de alto-falantes
667-PSIT6-55A	Placa de alta freqüência
667-PSIT6-69	Placa de processamento digital
667-PS42T6-05	Placa de botões
335-42006-00	Tela do display

Guia para eliminação de problemas

1. Sem varredura, sem imagem, sem som

OBSERVAÇÃO: A fonte de alimentação PDP tem a função de proteção contra sobrecorrente, sobretensão, etc. Se ocorrer sobrecorrente e sobretensão em determinada fonte de alimentação, não haverá aumento na saída da fonte.

2. Com som e sem imagem:

Defina o auto-teste da tela:

- a. Tela SD de 42": empurre 2 e 4 e suspenda o 3 da SW2001 na placa lógica;
- b. Tela HD de 50": abaixe 1 e 4 e suspenda 2, 3, 5, e 6 do SW2001 na placa lógica;
- c. Retorne à situação original quando a verificação estiver concluída.

3. Com imagem e sem som:

4. Um determinado canal está anormal

4.1 Sem imagem no AV

4.2 YPrPb ou YCrCb sem imagem

4.3 TV sem imagem

4.4 VGA sem imagem

4.5 HDMI sem imagem

Se não houver imagem, verifique primeiro se o dispositivo externo está normal. Se após eliminar o problema do dispositivo ainda não houver imagem, verifique X200, N208 e o circuito da periferia.

4.5.1 Imagem anormal:

a. Um determinado par de fios diferenciais do LVDS (RX0+/-, RX1+/-, RX2+/-, RX3+/-) do X600 está anormal, o que pode levar à falta de cor (não se trata de uma perda total de cor).

b. Falha nas fileiras de resistores R606~R610, que pode resultar em perda da cor do grau de cinza correspondente à imagem de todos os canais.

c. Falha nas fileiras de resistores R708~R713, que pode resultar na perda da cor do grau de cinza correspondente à imagem dos canais VGA/YPRPB/AV/TV.

d. Falha nas fileiras de resistores R258~R263, que pode resultar na perda da cor correspondente do grau de cinza correspondente à imagem do canal HDMI.

4.5.2 Imagem anormal vertical ou horizontalmente (tipo de barra): Anormal em linha completa que se estende por toda a extensão de cima para baixo na tela do aparelho de TV de definição padrão. Verticalmente anormal em meia tela de aparelho de TV de alta definição. A causa poderá ser dano no módulo do BUFFER de endereço que corresponde diretamente a sua posição, ou poderá ser dano no fio de ligação que corresponde diretamente à posição da tela. A anormalidade semelhante a barra horizontal também está relacionada com o circuito de drive Y, que corresponde diretamente a sua posição. Para julgar esses fenômenos, é possível fazer a verificação ajustando a tela para a condição de auto-verificação, conforme explicado acima.

4.5.3 Sem brilho na área do bloco quadrado. Normalmente, causado por dano no módulo do BUFFER de endereço, que corresponde diretamente a sua posição, ou poderá ser causado pelo dano do fio de ligação que corresponde diretamente à posição da tela. Para julgar esses fenômenos, é possível fazer a verificação ajustando a tela para o estado de auto-verificação conforme explicado acima.