arure SERVICE
NSX-F9

COMPACT DISC STEREO
CASSETTE RECEIVER

- BASIC TAPE MECHANISM : 2ZM-3MK PRR4NM
- BASIC CD MECHANISM: 6ZG-1 DFNN

SYSTEM	CD-CASSEIVER	SPEAKER	REMOTE CONTROLLER
NSX-F9	CX-NF9	SX-NAVF9	RC UNIT, 6AS01

- If requiring information about the Speaker, see Service Manual of SX-NAVFg S/M Code No. 09-971-177-4FP.

TABLE OF CONTENTS

SPECIFICATIONS 3
DISASSEMBLY INSTRUCTION 4~6
PROTECTION OF EYES FROM LASER BEAM DURING SERVICING 7
PRECAUTION TO REPLACE OPTICAL BLOCK 7
ELECTRICAL MAIN PARTS LIST 8 ~ 13
tRANSISTOR ILLUSTRATION 14
FL GRID ASSIGNMENT \& ANODE CONNECTION 15,16
BLOCK DIAGRAM-1 (TUNER:HE) 17
BLOCK DIAGRAM - 2 (TUNER: LH) 18
BLOCK DIAGRAM - 3 (MAIN /FRONT) 19, 20
BLOCK DIAGRAM-4 (CD) 21, 22
WIRING - 1 (MAIN : HE) 23, 24
SCHEMATIC DIAGRAM-1 (MAIN:HE) 25 ~ 27
IC BLOCK DIAGRAM-1 28~30
WIRING - 2 (MAIN : LH) 29, 30
SCHEMATIC DIAGRAM - 2 (MAIN: LH) 31~33
SCHEMATIC DIAGRAM - 3 (FRONT) 34~36
WIRING - 3 (FRONT) 37, 38
WIRING-4 (CD) 39, 40
SCHEMATIC DIAGRAM - 4 (CD) 41, 42
WIRING - 5 (DECK) 43
WIRING-6 (PT) 44
IC BLOCK DIAGRAM-2 45 ~ 49
IC DESCRIPTION $50 ~ 55$
PRACTICAL SERVICE FIGURE 56
ADJUSTMENT - 1 <TUNER / DECK> 57, 58
ADJUSTMENT - 2 <CD> 59 ~ 61
TEST MODE 62
TROUBLESHOOTING 63
TAPE MECHANISM EXPLODED VIEW 1/1 64, 65
TAPE MECHANISM PARTS LIST $1 / 1$ 66
SPRING APPLICATION POSITION 67
CD MECHANISM EXPLODED VIEW $1 / 2$ 68
CD MECHANISM PARTS LIST $1 / 2$ 69
CD MECHANISM EXPLODED VIEW $2 / 2$ 70
CD MECHANISM PARTS LIST 2 / 2 70
MECHANICAL EXPLODED VIEW 1/1 71, 72
MECHANICAL PARTS LIST $1 / 1$ 73
ACCESSORIES/PACKAGE LIST 73
REFERENCE NAME LIST 74

SPECIFICATIONS

<FM Tuner section>	
Tuning range	87.5 MHz to 108 MHz
Usable sensitivity(IHF)	13.2 dBf
Antenna terminals	75 ohms (unbalanced)
<MW Tuner section>	
Tuning range	531 kHz to 1602 kHz (9 kHz step)
	530 kHz to 1710 kHz (10 kHz step)
Usable sensitivity	$350 \mathrm{uV} / \mathrm{m}$
Antenna	Loop antenna
<SW Tuner section> (HE)	
Tuning range	5.900 MHz to 17.900 MHz
Antenna	Wire antenna
<Amplifier section>	
Power output	Rated $160 \mathrm{~W}+160 \mathrm{~W}$ (6 ohms,T.H.D. $1 \%, 1 \mathrm{kHz}$))
	Reference: $200 \mathrm{~W}+200 \mathrm{~W}$
	(6 ohms, T.H.D. $10 \%, 1 \mathrm{kHz}$)
*(without connec	ing to the SURROUND SPEAKERS)
Total harmonic distortion	0.1% ($20 \mathrm{~W}, 1 \mathrm{kHz}, 6$ ohms, DIN AUDIO)
Inputs	VIDEO/AUX : 150 mV (adjustable)
	MIC 1,MIC 2: 1 mV (10 kohms)
Outputs	LINE OUT: 200 mV
	SUPER WOOFER: 3.1 V
	SPEAKERS: accept speakers of
	SURROUND SPEAKERS:
	accept speakers of 16 ohms or
	more
	PHONES (stereo jack) : accepts
	headphones of 32 ohms or more
<Cassette deck section>	
Track format	4 tracks, 2 channels stereo
Frequency response	CRo_{2} tape: $50 \mathrm{~Hz}-16000 \mathrm{~Hz}$
	Normal tape: $50 \mathrm{~Hz}-15000 \mathrm{~Hz}$
Singnal-to noise ratio	60 dB (Dolby B NR ON, CrO_{2} tape peak level)
Recording system	AC bias
Heads	Deck 1 : playback head $\times 1$
	Deck 2 : Recording/Playback/

<Compact disc player section>	
Laser	Semiconductor laser ($\lambda=780 \mathrm{~nm}$)
D-A converter	1 bit dual
Signal-to-noise ratio	$83 \mathrm{~dB}(1 \mathrm{kHz}, 0 \mathrm{~dB})$
Harmonic distortion	$0.05 \%(1 \mathrm{kHz}, 0 \mathrm{~dB})$
Wow and flutter	Unmeasurable
<Speaker system SX-NAVF9>	
Cabinet type	3 way, bass reflex (magnetic shielded type)
Speakers	Woofer :
	160 mm cone type
	Tweeter:
	80 mm cone type
	Super tweeter:
	20 mm ceramic type
Impedance	6 ohms
Output sound pressure level	$87 \mathrm{~dB} / \mathrm{N} / \mathrm{m}$
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$260 \times 353 \times 330 \mathrm{~mm}$
Weight	5.9 kg
<General>	
Power requirements	$120 \mathrm{~V} / 220-230 \mathrm{~V} / 240 \mathrm{~V} \mathrm{AC}$, switchable $50 / 60 \mathrm{~Hz}$
Power consumption	210 W
Dimensions of main unit (W $\times H \times D$)	$300 \times 357.5 \times 374 \mathrm{~mm}$
Weight of main unit	13 kg
- Design and specifications are subject to change without notice.	
- Dolby noise reduction manufactured under license from Dolby	
Laboratories Licensing Corporation.	
"DOLBY" and the double-D symbol DD are trademarks of Dolby	
Laboratories Licensing Corporation.	
- The word "BBE"and the "BBE symbol" are trademarks of BBE	
Sound, Inc.	
Under license from BBE Sound,Inc.	

CD DIASSEMBLY INSTRUCTIONS

1ヒビックアッブの交換方法
1）TRAY をオーブンさせる。 stopperを矢印の方向へ押し，SHAFT SLED半分だけ抜く。
2）GEAR MAIN CAMを反時計方向（＂a＂の方向）に回し，figure 1のようにCD×をを持ち上げ る。
3）SHAFT SLED を抜く。
4）CD×カを下げてPICK UPを交換する。
5）CDメカをfigure 1のように上げて，SHAFT SLEDを取り付ける。
1．How to replace PICK UP．
1）Open the TRAY．
Push the stopper to arrow direction and release half of the SHAFT SLED．
2）Turn GEAR MAIN CAM to the counterclock－ wise（arrow＂ a ＂）direction，and lift up CD mechanism．（figure 1）
3）Remove SHAFT SLED．
4）CD mechanism in down position，replace PICK UP．
5）Lift up CD mechanism（figure 1），and Reas－ semble the SHAFT SLED．

2.5 巻チェンジ +7 ロックの外し方（figure 2）

1）CD基板のFFC2本を外し，ビス5本を外す。
2） 5 巻チェッ゙ $+フ$ ロッを後から持ち上げて外す。 （PANEL TRAYを外さなくても，5チェン゙ + プロッを後から外すことができる。）
2．How to remove 5CD CHANGER BLOCK（figure 2）
1）Remove the two FFC of the CD circuit board，and remove the five SCREWS．
2）Lift 5 CD CHANGER BLOCK from behind，and remove it．
（5CD CHANGER BLOCK can be removed even if PANEL TRAY are not removed．）

GEAR MAIN CAM

Figure 1

Figure 2

3 TRAY の分解•組立て方法
（1）分解方法
1）CHAS MECHA 下部のPLATE GEARの ボスを外側（矢印＂b＂方向）に強く押す。 （figure 3）
（TRAY が少しせり出すのを確認する）
2）TRAY をオーブン位置まで引き出す。
3）FFC を拔き，両サ仆 のCHAS MECH サ
（2ヶ所）を押してTRAYを外す。
（figure 4）
3．The disassemble and reassemble the TRAY
（1）Disassembling procedure．
1）Push the PLATE GEAR＇S Bossat the bottom part of CHAS MECHA strongly to the outside （arrow＂b＂direction）．（figure 3）
（Confirm that TRAY appears a little in the front．）
2）Draw TRAY to the open position．
3）Remove FFC，and push the two LEVERS at both side of the CHAS MECH to remove TRAY．（figure 4）

Figur
（2）組立て方法
1）LEVER TRAYがfigure 5 の位置で，CD劝が下がっていることを確認する。
2）TRAY をCHAS MECHAのレールに沿って組み込む。
3）半分までTRAYを組み込んだらFFCを差し，TRAYを最後まで押し入れる。 （figure 6）
（2）Reassembling procedure．
1）Confirm that LEVER TRAY is at the most right position in order for the CD Mechanism to be in the down position．（figure 5）
2）Push in the TRAY along the rail of the CHAS MECHA．
3）After TRAY is half closed and FFC is put in， it can enter by force until the end of TRAY closed．（figure 6）

4．ターンテープルの組立方法（figure 7）
1）LEVERTTを＂C＂の方向に押しなからら， TURN TABLE SCD を組み込む。（figure 7） この時，TRAY SCD とTURN TABLE SCD の切り欠きが同じ方向になるようにする。 （figure 8）
＊組み込を際のTURN TABLE SCDのCD番号 （ 1 ～5）は任意で搆いません。（figure 7）
4．How to reassemble the TURN TABLE．（figure 7）
1）Push LEVER TT in the direction of＂ C ＂，and put in the TURN TABLE SCD．（figure 7） After reassembly，one of the TURN TABLE DISC TRAY（can be either one of the five disc trays）must be aligned with TURN TABLE SCD．（figure 8）
That is，having no gap difference between the TURN TABLE 5CD and the TRAY 5CD．
＊When reassembling the TURN TABLE SCD，it is acceptable facing any $C D$ numbe $r(1 \sim 5)$ ．

Figure 5

Figure 6

Figure 7

PROTECTION OF EYES FROM LASER BEAM DURING SERVEING

This set eaploys laser. Therefore, be sure to follow carefully the instructions belcuw when servicing.

WARNINGEI
 WHEN SERVICING, DO NOT APPROACH THE LASER EXIT WITH THE EYE TOO CLOSELY. IN CASE IT IS NECESSARY TO CONFIRM LASER BEAM EMISSION. BE SURETO OBSERVEFROM A DISTANCE OF MORE THAN 30 cm FROM THE SURFACE OF THE OBJECTIVE LENS ON THE OPTICAL PICK-UP BLOCK.

- Caution: Invisible laser radiation when open and interlocks defeated avoid exposure to beam.
- Advarsel: Usynlig laserståling ved åbning, når sikkerhedsafbrydere er ude af funktion. Undgá udsættelse for stråling.

VAROITUS!

Laiteen Kāyttäminen muulla kuin tässä käyttöohjeessa mainitulla tavalla saataa altistaa käyt-täjän turvallisuusluokan 1 ylittävälle näkymättömälle lasersäteilyle.

VARNING!

Om apparaten används på annat sätt än vad som specificeras i denna bruksanvising, kan användaren utsāttas tōr osynling laserstrålning, som överskrider gränsen for laserklass 1.

CAUTION

Use of controls or adustments or performance of procedures other than these specified herin may result in hazardous radiation exposure.

ATTENTION

L'utillisation de comnandes, réglages ou procédures autres que ceux spédiés peut entraîner une dangereuse exposition aux radialions.

ADVARSE

Usynlig laseståling vedảbning, nảr sikkerhedsafbrydereer ude af funktion. Undè udsættelse for stråling.

This Compact Disc player is cdassified as a CLASS 1 LASER product.
The CLASS 1 LASER PRODUCT label is located on the rear exteriox.

Precaution to replace Optical block

(KSS-213B)

Body or clothes electrostatic potential could ruin laser diode in the optical block. Be sure ground bodly and workbench, and use the clothes do not touch the diode.

1) After the connection, remove solder shown in figure below.

PICK - IP Assy P.C.B.

REF.NO. PARTNO.

KANRI DESCRIPTION
NO.

REF.NO. PARTNO.

KANRI

NO.

DESCRIPTION

DIODE, 1 N 4148 M
DIODE, GBU8DL DIODE, RS603M DIODE, 1N4003 C-DIODE, 1SS184

C-DIODE, 1SS181 ZENER, UZL11L3 ZENER, UZ36BSA ZENER,UZ11BSC DIODE, FMB-G16L

ZENER,UZL6H2
ZENER, UZ5.1BSB C-DIODE, DAN202K DIODE, 1SS133 C-DIODE, DAP202K

ZENER, UZL6M1
ZENER, UZL6L1
C-DIODE, 1SS226

MAIN C.B

C10:	87-A10-231-090	CAP, E 3300-80
C102	87-A10-231-090	CAP, E 3300-80
C104	87-010-235-080	CAP, E 470-16 SME
C105	87-010-235-080	CAP, E 470-16 SME
ClO^{-}	87-010-247-080	CAP, E 100-50 M SME
C108	87-010-247-080	CAP, E 100-50 M SME
C109	87-010-263-080	CAP, E 100-10 SME
C112	87-010-382-080	CAP, E 22-25 M SME
C113	87-010-403-080	CAP, E 3.3-50 M SME
C116	87-012-140-080	C-CAP, S 470P-50 J CH
C12:	87-012-368-080	C-CAP, S 0.1-50 2 =
C122	87-012-368-080	C-CAP, S 0.1-50 2 F
C123	87-018-209-080	CAP, TC U 0.1-50 z F UP050
C124	87-012-368-080	C-CAP, S 0.1-50 2 F
C125	87-010-263-080	CAP, E 100-10 SME<LH>
C145	87-010-186-080	C-CAP, S 4700P-50 K B
C146	87-010-186-080	C-CAP, S 4700P-50 K B
C152	87-010-260-080	CAP, E 47-25 SME
C172	87-A10-056-090	CAP, E $4700-35 \mathrm{M}$
C172	87-A10-056-090	CAP, E 4700-35 M
C173	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C174	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C175	87-010-196-080	C-CAP, S 0.1-25 2 F C2012
C176	87-015-785-080	C-CAP, 0.1-25 Z F
C220	87-010-194-080	C-CAP, S 0.047-25 Z F
C221	87-010-400-080	CAP, E 0.47-50 M SME
C222	87-010-400-080	CAP, E 0.47-50 M SME
C223	87-010-187-080	C-CAP, S 5600P-50 K B
C224	87-010-187-080	C-CAP, S 5600P-50 K B
C225	87-010-179-080	C-CAP, S 1200P-50 K B
C226	87-010-179-080	C-CAP, S 1200P-50 K B
C227	87-010-402-080	CAP, E 2.2-50 M SME
C228	87-010-402-080	CAP, E 2.2-50 M SME
C229	87-010-402-080	CAP, E 2.2-50 M SME
C230	87-010-402-080	CAP, E 2.2-50 M SME
C231	87-010-147-080	C-CAP, S 3P-50 C CH GRM
C232	87-018-098-080	CAP, TC U 3.3P-50 K SL UP050
C233	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C234	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C235	87-010-196-080	C-CAP, S 0.1-25 2 F C2012
C236	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C243	87-010-322-080	C-CAP, S 100P-50 J CH
C244	87-010-322-080	C-CAP, S 100P-50 J CH
C249	87-018-209-080	CAP, TC U 0.1-50 Z F UP050
C250	87-A10-200-080	CAP, E 10-100 M BP SME
C260	87-015-785-080	C-CAP, 0.1-25 Z F
C301	87-010-318-080	C-CAP, S 47P-50 J CH
C302	87-010-318-080	C-CAP, S 47P-50 J CH
C303	87-012-157-080	C-CAP, S 330P-50 〕 CH GRM

C304	87-012-157-080	C-CAP, S 330P-50 J CH GRM
C305	87-012-145-080	C-CAP, S 270P-50 J CH
C306	87-012-145-080	C-CAP, S 270P-50 J CH
C307	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C311	87-010-198-080	C-CAP, S 0.022-25 K B
C312	87-010-198-080	C-CAP, S 0.022-25 K в
C313	87-010-181-080	C-CAP, S 1800P-50 K B
C314	87-010-181-080	C-CAP, S 1800P-50 K B
C315	87-010-179-080	C-CAP, S 1200p-50 K B
C316	87-010-179-080	C-CAP, S 1200P-50 K B
C317	87-016-492-080	C-CAP, S 0.33-16 2 F
C318	87-016-492-080	C-CAP, S 0.33-16 2 F
C319	87-016-491-080	C-CAP, S 0.22-16 Z F C2021
C320	87-016-491-080	C-CAP, S 0.22-16 Z F C2021
C321	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C322	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C324	87-010-260-080	CAP, E 47-25 SME
C325	87-010-370-080	CAP, E 330-6.3 M SME
C326	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C330	87-010-405-080	CAP, E 10-50 M SME
C332	87-015-785-080	C-CAP, 0.1-25 Z F
C335	87-016-462-080	C-CAP, S 1-16 Z F
C336	87-016-462-080	C-CAP, S 1-16 Z F
C337	87-016-196-080	C-CAP, S 0.1-25 Z F C2012
C338	87-010-196-080	C-CAP, S 0.1-25 Z F C2J12
C339	87-016-196-080	C-CAP, S 0.1-25 Z F C2012
C340	87-015-785-080	C-CAP, 0.1-25 2 F
C351	87-012-154-080	C-CAP, S 150P-50 J CH GRM
C352	87-012-154-080	C-CAP, S 150P-50 J CH GRM
C451	87-012-140-080	C-CAP, S 470P-50 J CH
C452	87-012-140-080	C-CAP, S 470P-50 J CH
C453	87-010-178-080	C-CAP, S 1000P-50 K B
C456	87-010-260-080	CAP, E 47-25 SME
C457	87-010-197-080	C-CAP, S 0.01-25 K B
C458	87-010-183-080	C-CAP, S 2700P-50 K B
C459	87-010-183-080	C-CAP, S 2700P-50 K B
C460	87-010-183-080	C-CAP, S 2700P-50 K B
C470	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C501	87-010-179-080	C-CAP, S 1200P-50 K B
C502	87-010-179-080	C-CAP, S 1200P-50 K B
C503	87-012-155-080	C-CAP, S 180P-50 J CH GRM
C504	87-012-155-080	C-CAP, S 180P-50 J CH GRM
C515	87-010-545-080	CAP, E 0.22-50 M SME
C516	87-010-545-080	CAP, E 0.22-50 M SME
C519	87-015-785-080	C-CAP, 0.1-25 Z F
C521	87-010-197-080	C-CAP, S 0.01-25 K B
C522	87-010-318-080	C-CAP, S 47P-50 J CH
C523	87-010-197-080	C-CAP, S 0.01-25 K B
C525	87-010-184-080	C-CAP, S 3300P-50 K B
C526	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C527	87-010-401-080	CAP, E 1-50 M SME
C528	87-010-401-080	CAP, E 1-50 M SME
C529	87-010-384-080	CAP, E 100-25 M SME
C530	87-010-197-080	C-CAP, S 0.01-25 K B
C531	87-010-183-080	C-CAP, S $2700 \mathrm{P}-50 \mathrm{~K} \mathrm{~B}$
C532	87-010-194-080	C-CAP, S 0.047-25 Z F
C533	87-010-196-080	C-CAP, S 0.1-25 z F C2012
C534	87-010-263-080	CAP, E 100-10 SME
C535	87-010-401-080	CAP, E 1-50 M SME
C536	87-010-401-080	CAP, E 1-50 M SME
C537	87-010-545-080	CAP, E 0.22-50 M SME
C538	87-012-142-080	C-CAP, S 0.33-16 Z F
C540	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C541	87-010-196-080	C-CAP, S 0.1-25 Z F C2012
C542	87-010-405-080	CAP, E 10-50 M SME
C543	87-010-546-080	CAP, E 0.33-50 SME
C544	87-010-546-080	CAP, E 0.33-50 SME
C545	87-010-400-080	CAP, E 0.47-50 M SME
C546	87-010-400-080	CAP, E 0.47-50 M SME
C547	87-015-883-080	C-CAP, $0.022-50 \mathrm{~K} \mathrm{B<LH}>$

REF. NO. PART NO.

KANRI

NO.

DESCRIPTION

C-CAP, 0.015-50 K B<HE> C-CAP, $0.022-50 \mathrm{~K}$ B<LH> C-CAP, 0.015-50 K B<HE>
C-CAP, 1000P-50 K B
C-CAP, 1000P-50 K B
C-CAP,S 1000P-50 K B
C-CAP, S 1000P-50 K B
CAP, E 4.7-50 M SME
CAP, E 4.7-50 M SME
C-CAP, S $1000 \mathrm{P}-50 \mathrm{~K}$ B
C-CAP, S $1000 \mathrm{P}-50 \mathrm{~K} \mathrm{~B}$
CAP, E $10-50 \mathrm{M}$ SME
CAP, E $10-50 \mathrm{M} \mathrm{SME}$
CAP, E 47-25 SME
CAP, E 220-16 SME
C-CAP,S 6800P-50 K B
C-CAP, S 6800P-50 K B
CAP, TC U 470P-50 K B UP050
CAP, TC U 470P-50 K B UP050
C-CAP,S 0.01-25 K B
C-CAP, S 0.01-25 K B
C-CAP, S $0.068-25$ Z F C2012
C-CAP, S $0.068-25$ Z F C2012
CAP, E 4.7-50 M SME
C-CAP, S 0.1-25 Z F C2012
C-CAP, S 0.1-25 Z F C2012
CAP, E 330-16 SME
CAP, E 4.7-50 M SME
C-CAP,S 0.01-25 K B
C-CAP,S $0.01-25 \mathrm{~K} \mathrm{~B}$
CAP, E 100-10 SME
C-CAP,S 0.1-25 Z F C2012
C-CAP, S 15P-50 J CH
C-CAP, S $1000 \mathrm{P}-50 \mathrm{~K} \mathrm{~B}$
C-CAP, S $1000 \mathrm{P}-50 \mathrm{~K} \mathrm{~B}$
C-CAP, S 0.1-25 2 F C2012
CAP, E 220-10 SME
CAP,TC U 0.01-16 N Y UP050
CAP, E 10-50 M SME
CAP, E 10-50 M SME
C-CAP, S 0.047-25 Z F
C-CAP, S 0.1-25 Z F C2012
CAP, E 100-10 SME
CAP, E 10-50 M SME
C-CAP, S 0.01-25 K B<LH>
CAP, E $0.47-50 \mathrm{M} \mathrm{SME}$
CAP, E $1-50 \mathrm{M}$ SME
CAP, E 1-50 M SME
C-CAP, S 0.01-25 K B
CAP, E $10-50 \mathrm{M}$ SME
CAP, E 10-50 M SME
C-CAP,S 0.01-25 K B
C-CAP, S $0.01-25 \mathrm{~K} \mathrm{~B}$
C-CAP, S 3300P-50 K B
C-CAP, S 3300P-50 K B
C-CAP, S 1200P-50 K B
C-CAP, S 1200P-50 K B
CAP, E 1-50 M SME
C-CAP, S $1500 \mathrm{P}-50 \mathrm{~K} \mathrm{~B}$
C-CAP, S $8200 \mathrm{P}-50 \mathrm{~K} \mathrm{~B}$
CAP, E 47-50 SME
C-CAP,S 0.047-25 Z F
CAP, E 3.3-50 M SME
C-CAP, S 1000P-50 K B
C-CAP, S $0.01-25 \mathrm{~K} \mathrm{~B}$
C-CAF, S 0.1-25 Z F C2012
C-CAP, S $0.01-25 \mathrm{~K} \mathrm{~B}$

REF．NO．PARTNO．

C820	87－010－408－080
C821	87－010－197－080
C823	87－010－197－080
C828	87－010－197－080
C829	87－010－197－080
C830	87－015－819－080
C835	87－010－197－080
C901	87－010－197－080
C902	87－015－785－080
C903	87－018－119－080
C941	87－010－314－080
C943	87－010－197－080
C944	87－014－051－080
C945	87－010－197－080
C946	87－010－401－080
C950	87－014－073－080
C952	87－010－197－080
CO53	87－010－197－080
C954	87－010－400－080
C956	87－010－263－080
C960	87－010－196－080
C951	87－010－152－080
C997	87－018－134－080
C990	87－010－197－080
c993	87－018－134－080

87－010－196－080
CF801 87－008－261－010
CFE02 87－008－261－010
FFE801 A8－6ZA－190－030
FR121 87－029－060－010 FR122 87－029－060－010 J252 87－099－678－010 J2ミ3 87－099－474－010 Ј254 87－A60－238－010

J652 87－099－625－010
－A60－202－010
L10
L40

L404
87－A50－049－010 7－A50－027－010 87－A50－015－010

L742 87－290－051－010
L742
L743
L770
L832
二ンク
ーロ $\begin{array}{ll}\text { PR113 } & 86-\text { NF4－666－010 } \\ \text { PR114 } & 87-026-681-080 \\ \text { RY101 } & 87-045-389-0\end{array}$ RY102 87－045－382－010

SFR 301 －87－024－355－080 SFF302 87－024－355－080 SFK303 87－024－355－080 SFR304 87－024－355－080 SFR305 87－024－356－080

SFR306－87－024－356－080 87－024－356－080 SFR：52 87－024－356－080 SFRT22 87－024－352－080 TC7 1 87－011－253－080

CAP，E 47－50 SME C－CAP，S 0．01－25 K B C－CAP，S 0．01－25 K B C－CAP，S 0．01－25 K B C－CAP，S $0.01-25 \mathrm{~K} \mathrm{~B}$

C－CAP，0．01－50 K B
C－CAP，S $0.01-25 \mathrm{~K} \mathrm{~B}$ C－CAP，S $0.01-25 \mathrm{~K} \mathrm{~B}$ C－CAP，0．1－25 Z F CAP，TC U 100P－50 K B UP050

C－CAP，S 22P－50 J CH＜HE＞ C－CAP，S $0.01-25 \mathrm{~K}$ B＜HE＞ CAP，PP 560P－100 J＜HE＞ C－CAP，S 0．01－25 K B＜HE＞ CAP，E 1－50 M SME

CAP，PP 4700P－100 J＜HE＞ C－CAP，S 0．01－25 K B＜HE＞ C－CAP，S 0．01－25 K B＜HE＞ CAP，E 0．47－50 M SME＜HE＞ CAP，E 100－10 SME＜HE＞

C－CAP，S 0．1－25 Z F C2012
C－CAP，S 8P－50 D CH＜LH＞
CAP，TC U 0．01－16 N Y UP050
C－CAP，S 0．01－25 2 B
CAP，TC U 0．01－16 N Y UP050
C－CAP，S 0．01－25 K B
C－CAP，S 0．1－25 Z F C2012
FLTR，CFSFE10．7MA5
FLTR，CFSFE10．7MA5
6ZA－1 YFEUNM
RES，FUSE $33-1 / 4 \mathrm{~W} \mathrm{~J}$
RES，FUSE 33－1／4w J
JACK，6．3 BLK ST N / SW JACK，PIN 3P BLK i／sW TERMINAL，SP 4P（ MSC ）

JACK，PIN 4P BLK W／O SW TERMINAL，ANT 4P MSP－154V－02 COIL，1UH K
COIL，1UH K
COIL，TRAP 85K（COI）
COIL，TRAP 85K（COI）
COIL，OSC 85 KHZ BIAS
COIL， 1 POLE MPX（TOK）
COIL， 1 POLE MPX（TOK）
COIL，FM DET（TOK）
FLTR，CFAZ－450（TOK）＜LH＞ FLTR，CFMT－450A（TOK）＜HE＞ C－COIL， 2125 2．2UH K MLF2012 COIL，10UH K LALO2
COIL，2．2UH K CECS
COIL，ANT SW（COI） $7.96 \mathrm{MHZ}<\mathrm{HE}>$ COIL，OSC SW（COI）15MHZ＜HE＞ COIL，1MH K LAL03＜HE＞ COIL， 10 MH J EL0607＜HE＞ COIL，AM PACK 1 （TOK）＜LH＞

COIL，AM PACK 3 （TOR）＜HE＞ PROTECTOR，5A 491SERIES 60 V PROTECTOR，5A 491SERIES 60V
RELAY，12V OSA－SS－212DM5 RELAY，12V OUAZ－SH－112L

SFR，33K H EVN DJRA03 SFR， 33 K H EVN DJRA03 SFR， 33 K H EVN DJAA03 SFR， 33 K H EVN DJRA03 SFR，47K H EVN DJA．403

SFR，47K H EVN DJFAR03
SFR，47K H EVN DJAA03
SFR，47K H EVN DJAR03
SFR 4．7K H EVN DJAA03 TRIMMER，CER 30P 4.0 X 4.5 ECRLA

TRIMMER，CER 20P 6．15×5．9 VCT51＜HE＞ TRIMMER，CER 30P 6．15X5．9 VCT51＜HE＞
C－THMS，4．7K＜HE＞
VR，RTRY 50KBX2 V
F－CABLE，7P 2.5 （NF9）
VIB，CER CSB 456 F15
VIB，XTAL 4.500 MHZ CSA－ 309
VIB，CER 450.0 KHZ BFU $\mathrm{C}<\mathrm{HE}>$

FRONT C．B

C201	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C202	87－012－156－080	C－CAP，S 220P－50 J CF GRM
C203	87－010－263－040	CAP，E 100－10 M SME
C204	87－010－494－040	CAP，E 1－50 5L SRE
C205	87－010－494－040	CAP，E 1－50 5L SRE
C206	87－010－550－040	CAP，E 100－6．3 5L SRE
C207	87－010－550－040	CAP，E 100－6．3 5L SRE
C208	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C209	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C210	87－010－314－080	C－CAP，S 22P－50 J CH
C211	87－010－154－080	C－CAP，S 10P－50 D CH
C212	87－010－196－080	C－CAP，S 0．1－25 Z F Ca012
C213	87－010－178－080	C－CAP，S 1000P－50 K E
C214	87－010－112－040	CAP，E 100－16 SME
C215	87－010－322－080	C－CAP，S 100P－50 J CE
C216	87－010－560－040	CAP，E 10－50 M 5L MA
C351	87－010－497－040	CAP，E 4．7－35 5L SRE
C352	87－010－497－040	CAP，E 4．7－35 5L SRE
C353	87－010－981－040	CAP，E 22－35 M 5L SRE
C381	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C382	87－010－196－080	C－CAP，S 0．1－25 Z F Czol2
C383	87－010－196－080	C－CAP，S 0．1－25 Z F Cajl2
C384	87－010－196－080	C－CAP，S 0．1－25 $2 \mathrm{~F} \mathrm{C2O12}$
C385	87－010－322－080	C－CAP，S 100P－50 J Ch
C386	87－010－400－040	CAP，E 0．47－50 SME
C387	87－010－400－040	CAP، E 0．47－50 SME
C389	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C401	87－010－196－080	C－CAP，S 0．1－25 Z F Czol2
C402	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C601	87－010－405－040	CAP，E 10－50 M SME
C602	87－010－176－080	C－CAP，S 680P－50 J Sl
C603	87－010－186－080	C－CAP，S 4700p－50 K B
C604	87－010－322－080	C－CAP，S 100P－50 J CH
C605	87－010－321－080	C－CAP，S 82P－50 J CH
C606	87－010－401－040	CAP，E 1－50 M SME
C607	87－010－196－080	C－CAP，S 0．1－25 Z F Czol2
C608	87－010－322－080	C－CAP，S 100P－50 J CH
C609	87－010－491－040	CAP，E 0．22－50 5L SRE
C610	87－010－177－080	C－CAP，S 820P－50 J SL
C611	87－010－406－040	CAP，E 22－50 M SME
C612	87－010－196－080	C－CAP，S 0．1－25 Z F C2J12
C614	87－A10－189－040	CAP，E 220－10 M
C615	87－010－498－040	CAP，E 10－16 M 5L SRE
C619	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C620	87－010－197－080	C－CAP，S 0．01－25 K B
C622	87－010－194－080	C－CAP，S 0．047－25 Z F
C650	87－010－319－080	C－CAP，S 56P－50 J CH
C651	87－010－319－080	C－CAP，S 56P－50 J CH
C652	87－010－404－040	CAP，E 4．7－50 SME
C654	87－010－178－080	C－CAP，S 1000P－50 K B
C655	87－010－196－080	C－CAP，S 0．1－25 Z F C2：12
C656	87－010－196－080	C－CAP，S 0．1－25 z F C2012
C657	87－010－263－040	CAP，E 100－10 M SME
C658	87－010－196－080	C－CAP，S 0．1－25 Z F C2：12
C659	87－010－184－080	C－CAP，S 3300P－50 K E
C660	87－010－426－080	C－CAP，S 0．012－25 K B
C663	87－010－263－040	CAP，E 100－10 M SME
C654	87－012－141－080	C－CAP，S 0．22－16 Z F
C667	87－018－130－080	CAP，TC U 820P－50 K B $\because 2050$

REF．NO．PARTNO．KANRI DESCRIPTION
NO．

C668	87－010－180－080	C－CAP，S 1500P－50 K B
C669	87－010－404－040	CAP，E 4．7－50 SME
C670	87－010－404－040	CAP，E 4．7－50 SME
C671	87－010－188－080	C－CAP，S 6800P－50 K B
C672	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C701	87－010－421－040	CAP，E 4．7－50 M 5L SRE
C702	87－010－112－040	CAP，E 100－16 SME
C705	87－010－493－040	CAP，E 0．47－50 M 5L SRE
C706	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C707	87－010－196－080	C－CAP，S 0．1－25 Z F C2012
C708	87－010－400－040	CAP，E 0．47－50 SNE
C709	87－010－192－080	C－CAP，S 0．022－50 2 F C2012
C710	87－010－400－040	CAP，E 0．47－50 SNE
C711	87－010－190－080	C－CAP，S 0．01－50 z F C2012
C712	87－010－196－080	C－CAP，S 0．1－25 z F C2012
C713	87－010－185－080	C－CAP，S 3900P－50 R B
C714	87－010－194－080	C－CAP，S 0．047－25 2 F
C715	87－010－181－080	C－CAP，S 1800P－50
C716	37－310－192－080	C－CAP，S 0．022－50 ב F 20012
C717	37－510－176－080	C－CAP，S 680P－50 こ SL
C718	87－210－188－080	C－CAP，S 6800P－5c $\because=$ E
C719	87－012－145－080	C－CAP，S 270P－50 こ OF
C720	37－010－183－080	C－CAP，S 2700P－5C \because E
C721	37－210－402－040	CAP，E 2．2－50 SME
C 722	97－210－495－040	CAP，E 2．2－50 5L ESE
C723	5－210－378－040	CAP，E 10－16 M SNE
C724	37－210－192－080	C－CAP，S 0．022－5C E＝ 2012
C725	87－010－493－040	CAP，E 0．47－50 M
C726	8？－－10－190－080	C－CAP，S 0．01－50＝F C2012
C727	87－010－196－080	C－CAP，S 0．1－25 Z＝C： 212
C728	87－010－185－080	C－CAP，S 3900P－50 K E
C729	87－010－194－080	C－CAP，S 0．047－25 Z F
C730	8T－－${ }^{\text {810－181－080 }}$	C－CAP，S 1800P－5 ${ }^{\text {C E }}$
C731	35－310－192－080	C－CAP，S 0．022－5i z $=2012$
C732	87－010－176－080	C－CAP，S 680P－50 こ SL
C733	87－010－188－080	C－CAP，S 6800P－50 K b
C734	87－012－145－080	C－CAP，S 270P－50 こ CH
C735	87－010－183－080	C－CAP，S 2700P－5C＜E
C751	87－010－322－080	C－CAP，S 100P－50こCH
C752	87－010－322－080	C－CAP，S 100p－50 こ Ch
C753	87－010－493－049	CAP，E 0．47－50 M $\because=S E E$
C754	87－010－493－049	CAP，E 0．47－50 M \because SEE
C801	87－010－197－080	C－CAP，S 0．01－25 ：B
C802	87－010－178－080	C－CAP，S 1000P－5C A E
C803	87－010－196－080	C－CAP，S 0．1－25 Z F CL 012
C804	87－010－196－080	C－CAP，S 0．1－25 Z F Czol2
C805	87－010－805－080	C－CAP，S 1－16 2 F
C806	87－010－805－080	C－CAP，S 1－16 Z F
C807	87－010－561－040	CAP，E 100－16 M 5－SFE
C808	87－A10－189－040	CAP，E 220－10 M
C809	87－010－491－040	CAP，E 0．22－50 5L SRE
C810	87－010－491－040	CAP，E 0．22－50 51 SRE
C811	87－010－495－040	CAP，E 2．2－50 5L ERE
C813	87－010－560－040	CAP，E 10－50 M 5L MA
C814	87－010－405－040	CAP，E 10－50 M SNE
C815	87－010－322－080	C－CAP，S 100P－50 工 CF
C816	87－010－322－080	C－CAP，S 100P－50 こ CF
C817	87－012－142－080	C－CAP，S 0．33－16 z F
FB601	87－008－372－080	FLTR，EMIBL01 RN：
FFC102	87－A80－054－010	FF－CABLE，4P 1．25 70Mw
FFCLS 6	87－A80－052－010	FF－CABLE，14P 1．25 $28 . \mathrm{MM}$
FFC10 6	8 $\varepsilon-921-081-110$	FF－－CABLE，21P 1．2三
FFC30：	87－A80－053－010	FF－CABLE， 8 P 1．25 300mm
FFCS ${ }^{\text {a }}$	$82-915-161-110$	FF－CABLE，15P 1．2う
FL3C：	8E－NF9－653－010	FL，BJ539GK
FL302	8E－NF9－616－010	FL，BJ504GK
J60i	8－－A60－284－010	JACK，3．5MO（MSC）
J621	8－－A60－284－010	JACK，3．5MO（MSC！
L201	8－－A50－158－010	COIL，Clock 4.19 Naz （ PF ）
L650	87－005－738－080	COIL，47UH J SPOE

REF．NO．PARTNO．

KANRI

NO．

LED401	87－070－281－080	LED，SLZ－736A－25H－S－T1 P－GRN
LED402	87－070－281－080	LED，SLZ－736A－25H－S－T1 P－GRN
LED403	87－070－281－080	LED，SLZ－736A－25H－S－T1 P－GRN
LED404	87－070－281－080	LED，SLZ－736A－25H－S－T1 P－GRN
LED405	87－070－281－080	LED，SLZ－736A－25H－S－T1 P－GRN
LED406	87－070－281－080	LED，SLZ－736A－25H－S－T1 P－GRN
LED407	87－017－979－010	LED，SEL2413E GRN
LED408	87－017－979－010	LED，SEL2413E GRN
LED409	87－017－979－010	LED，SEL2413E GRN
LED410	87－017－979－010	LED，SEL2413E GRN
LED411	87－017－979－010	LED，SEL2413E GRN
LED412	87－017－979－010	LED，SEL2413E GRN
LED413	87－017－979－010	LED，SEL2413E GRN
LED414	87－017－979－010	LED，SEL2413E GRN
LED420	87－A40－259－080	LED，SLR－342VCT31 RED
LED421	87－A40－259－080	LED，SLR－342VCT31 RED
LED422	87－A40－259－080	LED，SLR－342VCT31 RED
LED423	87－A40－259－080	LED，SLR－342VCT31 RED
LED425	87－070－2－3－0：0	LED，SLZ－738A－24S PGRN
LED426	87－070－2－8－010	LED，SLZ－738A－24S PGRN
LED427	87－070－25－0：0	LED，SLZ－936C－30－S RED
LED428	87－070－25－0：0	LED，SLZ－936C－30－S RED
LED429	87－070－2－シ－C．0	LED，SLZ－738A－24S PGRN
LED430	87－070－2－き－0－0	LED，SLZ－738A－24S PGRN
S301	87－A90－055－0E0	SW，TACT EVQ11G04M
S302	87－A90－Cミラ－Cミ0	SW，TACT EVQ11G04M
S303	87－A90－C5こ－くこ0	SW，TACT EVQ11G04M
S304	87－A90－055－080	SW，TACT EVQ11G04M
S305	87－A90－055－0 0	SW，TACT EVQ11G04M
S306	87－A90－Cミ5－CEO	SW，TACT EVQ11G04M
S307	87－A90－095－080	SW，TACT EVQ11G04M
S308	87－A90－055－050	SW，TACT EVQ11G04M
S309	87－A90－Cこう－Cこ0	SW，TACT EVQ11G04M
S310	87－A90－Cミう－CE0	SW，TACT EVQ11G04M
S311．	87－A90－C55－030	SW，TACT EVQ11G04M
S312	87－A90－095－080	SW，TACT EVQ11G04M
S313	87－A90－095－080	SW，TACT EVQ11G04M
S314	87－A90－CG5－C50	SW，TACT EVQ11G04M
S315	87－A90－055－030	SW，TACT EVQ11G04M
S316	87－A90－055－C50	SW，TACT EVQ11G04M
S317	87－A90－095－080	SW，TACT EVQ11G04M
S318	87－A90－055－030	SW，TACT EVQ11G04M
S319	87－A90－055－060	SW，TACT EVQ11G04M
S320	87－A90－C55－080	SW，TACT EVQ11G04M
S321	87－A90－CE5－080	SW，TACT EVQ11G04M
S326	87－A90－095－080	SW，TACT EVQ11G04M
S327	87－A90－095－080	SW，TACT EVQ11G04M
S328	87－A90－095－080	SW，TACT EVQ11G04M
S329	87－A90－095－080	SW，TACT EVQ11G04M
S330	87－A90－095－080	SW，TACT EVQ11G04M
S331	87－A90－095－080	SW，TACT EVQ11G04M
S332	87－A90－095－030	SW，TACT EVQ11G04M
S333	87－A90－095－080	SW，TACT EVQ11G04M
S334	87－A90－095－080	SW，TACT EVQ11G04M
S335	87－A90－095－080	SW，TACT EVQ11G04M
S336	87－A90－055－0．80	SW，TACT EVQ11G04M
S338	87－A90－095－080	SW，TACT EVQ11G04M
S339	87－A90－095－C80	SW，TACT EVQ11G04M
SW251	87－A90－392－010	SW，RTRY EC16B24304－20 NON
VR601	86－NFA－6：7－C10	VR，RTRY 10K15AX1 1 V XV0121PV．

CD SW C．B

LED451	$87-017-c-010$	LED，SEL2413E GRN
LED452	$87-017-c-9-0$	LED，SEL2413E GRN
LED453	$87-017-c-010$	LED，SEL2413E GRN
LED454	$87-017-9-010$	LED，SEL2413E GRN
LED455	$87-017-c-9-C 10$	LED，SEL2413E GRN
LED456	$87-017-5-9-0$	LED，SEL2413E GRN
LED457	$87-017-9-9-10$	LED，SEL2413E GRN

LED458	$87-017-979-010$
LED459	$87-017-979-010$
LED460	$87-017-979-010$
S451	$87-$ A90－095－080
S452	$87-$ A90－095－080
S453	$87-$ A $90-095-080$
S454	$87-$ A90－095－080
S455	$87-$ A90－095－080
S456	$87-$ A90－095－080
S457	$87-$ A90－095－080

VR C．B
SW252 87－A90－340－010
$\mathrm{AC} 2 \mathrm{C} . \mathrm{B}$

PRI01	87－026－682－080
PR： 02	87－026－682－080
PT C．B	
	82－304－743－010
Fico	87－035－368－010
F112	87－035－368－010
FC1 11	87－033－213－080
FC： 22	87－033－213－080
FC1 23	87－033－213－080
FC1 24	87－033－213－080
PTCJ1	86－NF9－630－010
PTOJ1	86－NF9－631－010
SW101	87－A90－165－010

LED，SEL2413E GRN
LED，SEL2413E GRN
LED，SEL2413E GRN
SW，TACT EVQ11G04M
SW，TACT EVQ11G04M
SW，TACT EVQ11G04M
SW，TACT EVQ11G04M
SW，TACT EVQ11G04M
SW，TRCT EVQ1G04M
SW，TACT EVQ11G04M

SW，RTRY EC16B24204－15

PROTECTOR，10A 491SERIES 60V PROTECTOR，10：491SERIES 60V

TERMINAL， 1 P
FUSE，4A，250V T
FUSE，4A，250V＝
FUSE CLAMP，PF＝5000
FUSE CLAMP，PF 15000
FUSE CLAMP，PFI5000 FUSE CLAMP，PF： 5000 PT，6NF－9H＜HE＞
PT，6NF－9LH＜LH＞
SW，SL 1－2－3 SWS2301

D MIN C．B

C11	$87-010-182-089$
C12	$87-016-081-089$
C13	$87-016-081-089$
C14	$87-016-081-089$
C15	$87-010-404-049$
C16	$87-016-081-089$
C17	$87-010-197-089$
C18	$87-010-402-049$
C19	$87-010-382-049$
C20	$87-010-213-089$
C21	$87-010-197-089$
C22	$87-010-263-049$
C23	$87-010-197-089$
C24	$87-016-369-089$
C25	$87-010-197-089$
C2E	$87-016-369-089$
C27	$87-010-197-089$
C28	$87-010-146-029$
C29	$87-010-154-089$
C3O	$87-010-263-049$
C31	$87-010-178-089$
C32	$87-010-198-089$
C33	$87-016-081-089$
C34	$87-010-197-089$
C35	$87-010-263-049$
C35	$87-015-677-049$
C37	$87-010-197-089$
C38	$87-010-260-089$
C39	$87-010-196-089$
C91	$87-010-263-049$
C10	$87-010-596-089$
C102	$87-010-188-089$
C10	$87-018-133-089$

C104	87－012－156－089	C－CAP，S 220P－50 CH
C105	87－010－404－049	CAP，E 4．7－50 SME
C106	87－010－263－049	CAP，E 100－10 SME
C107	87－010－197－089	C－CAP，S 0．01－25 B
C108	87－016－526－089	C－CAP，S 0．47－16 BK
C109	87－010－197－089	C－CAP，S 0．01－25 B
C112	87－010－318－089	C－CAP，S $47 \mathrm{P}-50 \mathrm{CH}$
C113	87－010－263－089	CAP，E 100－10 SME 5X11
C114	87－010－197－089	C－CAP，S 0．01－25 B
C115	87－010－318－089	C－CAP，S $47 \mathrm{P}-50 \mathrm{CH}$
C116	87－010－318－089	C－CAP，S 47P－50 CH
C117	87－010－197－089	C－CAP，S 0．01－25 B
C122	87－010－186－089	C－CAP，S 4700P－50 B
C123	87－010－382－049	CAP，E 22－25 SME
C201	87－010－318－089	C－CAP，S $47 \mathrm{P}-50 \mathrm{CH}$
C202	87－010－318－089	C－CAP，S 47P－50 CH
C203	87－010－321－089	C－CAP，S 82P－50 CH
C204	87－210－321－089	C－CAP，S 82P－50 CH
C205	87－210－321－089	C－CAP，S $82 \mathrm{P}-50 \mathrm{CH}$
C206	87－210－321－089	C－CAP，S 82P－50 CH
C207	87－：12－153－089	C－CAP，S 120P－50 CE
C208	87－212－153－089	C－CAP，S 120P－50 CH
C209	87－212－153－089	C－CAP，S 120P－50 CH
C210	87－：12－153－089	C－CAP，S 120P－50 C：
C211	87－： $10-403-049$	CAP，E 3．3－50 SME
C212	87－：10－403－089	CAP，E 3．3－50 SME
C213	87－： $10-186-089$	C－CAP，S 4700P－50
C214	87－こ10－186－089	C－CAP，S 4700P－50 E
C231	87－：15－251－049	CAP，E 220－16 SMG
C232	87－610－263－089	CAP，E 100－10 SME 5X11
C301	87－010－196－089	C－CAP，S 0．1－25 F
C302	87－610－260－089	CAP，E 47－25 SME
C401	87－610－403－089	CAP，E 3．3－50 SME
C402	87－610－403－049	CAP，E 3．3－50 SME
C501	87－516－459－049	CAP，E 470－10 SMG
C502	87－010－197－089	C－CAP，S 0．01－25 B
C503	87－C10－263－049	CAP，E 100－10 SME
C504	87－C10－196－089	C－CAP，S 0．1－25 F
C505	87－C10－196－089	C－CAP，S 0．1－25 F
C506	87－C10－196－089	C－CAP，S 0．1－25 F
C507	87－010－196－089	C－CAP，S 0．1－25 F
C508	87－016－459－049	CAP，E 470－10 SMG
C509	87－010－196－089	C－CAP，S 0．1－25 F
C510	87－020－196－089	C－CAP，S 0．1－25 F
C601	87－010－196－089	C－CAP，S 0．1－25 F
C602	87－016－251－049	CAP，E 220－16 SMG
C603	87－010－196－089	C－CAP，S 0．1－25 F
C701	87－010－322－089	C－CAP，S 100P－50 CH
C702	87－010－318－089	C－CAP，S 47P－50 CH
C703	87－0：0－318－089	C－CAP，S 47P－50 CH
C705	87－0：0－178－089	C－CAP，S 1000P－50 B
C706	87－0：0－178－089	C－CAP，S 1000P－50 B
C901	87－010－260－049	CAP，E 47－25 SME
C902	87－010－196－089	C－CAP，S 0．1－25 F
L11	87－003－102－089	COIL，10UH K LAL02
LED901	87－A＜0－123－019	LED，SLZ－8128A－01－B
M601	87－045－305－019	MOTOR，RF－500TB
R36	87－022－365－089	C－RES，S $100 \mathrm{~K}-1 / 10 \mathrm{~W}$ F
R37	87－022－363－089	C－RES，S $68 \mathrm{~K}-1 / 10 \mathrm{~W}$ F
R38	87－022－363－089	C－RES，S 68K－1／10W F
R39	87－022－363－089	C－RES，S $68 \mathrm{~K}-1 / 10 \mathrm{~W}$ F
R40	87－022－363－089	C－RES，S $68 \mathrm{~K}-1 / 10 \mathrm{~W} \mathrm{~F}$
R41	87－022－365－089	C－RES，S $100 \mathrm{~K}-1 / 10 \mathrm{~W}$ F
SFR11	87－024－175－089	SFR，47K DIA6V
SFR12	87－024－173－089	SFR，22K HRH0638C
SFR13	87－c24－176－089	SFR，100K DIA6V
SW601	87－0こ5－109－019	SW，PUSH SPPB 61
SW602	87－0ミ6－109－019	SW，PUSH SPPB 61
SW603	87－0：5－109－019	SW，PUSH SPPB 61
	88－9－5－261－110	FF－CABLE 6P 1.25 260M

REF．NO．PART NO．
 KANRI DESCRIPTION NO．

X101 87－030－402－089 VIB，XTAL 16．9344MHZ

LED C．B

LED701	$87-017-733-080$	LED，SEL1250SM
LED702	$87-017-350-080$	LED，SEL1550CM
LED703	$87-017-733-080$	LED，SEL1250SM

T－T C．B

LED411 87－070－288－019
M401 87－A90－036－019
PS401 87－A90－156－019
Q411 87－A30－031－019
LED，GL380
MOT ASSY，RF－300CA－11
SNSR，SG－240
P－TR，PT380F
Sn401 87－036－109－019
SW，PUSH SPPB61

CD MOTOR C．B

Sri	$87-036-340-019$	SW，LEAF LSA－2121
$\mathbf{N 2 0}$	$87-045-358-019$	MOT，RF－310TA 43
$\mathbf{N 2 1}$	$87-045-356-019$	MOT，RF－310TA 30

87－045－356－019
MOT，RF－310TA 30

REF．NO．PARTNO．

KAn

 NO．DECK C．B

C0N502	$82-$ ZM1－625－019		RBN，CORD，4P－55	
SFR1	$87-024-581-089$		SFR，3．3K DIA 6H	
SOL1	$82-$ ZM1－618－010		SOL ASSY，27	
SOL2	$82-$ ZM1－618－010	SOL ASSY，27		
SW1	$87-036-378-010$		SW，PUSH 1－1－1	SH2
SW2	$87-036-378-010$		SW，PUSH 1－1－1	SH2
SW3	$87-036-378-010$	SW，PUSH 1－1－1	SH2	
SW4	$87-036-378-010$	SW，PUSH 1－1－1	SH2	
SW5	$87-036-378-010$	SW，PUSH 1－1－1	SH2	
SW6	$87-036-378-019$	SW，PUSH 1－1－1	SH2	
SW8	$87-036-378-019$		SW，PUSH 1－1－1	SH2
W502	$87-099-756-019$		CONN，15P 9604	S

HEAD－1 C． 3
RBN，CORD，4P－55
SFR，3．3K DIA 6 H
SOL ASSY， 27
OL ASSY， 2
SW，PUSH 1－1－1 SH2

SH 1－1－1 SH
W，PUSH 1－1－1 SH2 SW，PUSH 1－1－1 SH2 SW，PUSH 1－1－1 SH2 SW，PUSH 1－1－1 SH2 CONN，15P 9604 SE

DESCRIPTION

HEAD－2 こ．

CON351 5 － 5 NF5－518－110 CONN ASSY，8P RPB

Oチップ抵抗部品コード／CHIP RESISTOR PART CODE
チップ抵抗部品コードの成り立ち
Chip Resistor Part Coding

桁表示
Figure
抵抗値
Value of resistor
チップ抵抗
Chip resistor

Wattage	$\begin{aligned} & \text { 锥類 } \\ & \text { Typ } \end{aligned}$	$\begin{gathered} \text { 話容誤差 } \\ \text { Tolerance } \end{gathered}$	$\begin{gathered} \text { 記号 } \\ \text { Symbol } \\ \hline \end{gathered}$	寸法／Dimensions（mm）				$\begin{aligned} & \text { 抵抗コート }: ~: ~ A ~ \\ & \text { Resistor Code }: ~ A ~ \end{aligned}$
				948／Form	L	W	t	
1／16W	1608	$\pm 5 \%$	CJ	$\stackrel{L}{ } \rightarrow_{\text {d }}$	1.6	0.8	0.45	108
1／10W	2125	$\pm 5 \%$	CJ		2	1.25	0.45	118
1／8W	3216	$\pm 5 \%$	CJ		3.2	1.6	0.55	128

FL GRID ASSIGNMENT \& ANODE CONNECTION

FL, BJ539GK
GRID ASSIGNMENT

(1)

ANODE CONNECTION

	8G	7G	6G	56	4G	3G	2 G	IG
PI	50	-	-	--	-	-	-	REC
P2	50	DO	-	-	-	-	-	(1)
P3	51	NR	-	-	-	-	-	EDIT
P4	59	$<$	-	-	-	-	-	AI
P5	5 c	D	-	-	-	-	-	PRGM
P6	58	$P_{\text {VF }}$	-	-	-	-	-	MONO
P7	5d	REC	-	-	-	-	-	RANDOM
P8	58	53	S2	-	-	-	-	SLEEP
P9	56	$)$	-	\bigcirc	-	-	-	((10)))
P10	3 d	\square	-	2 c	20	20	20	RDS
P!1	30	C	-	2 r	2h	2 n	2h	${ }_{\text {(RES }}$)
P12	3 c	\rightarrow	-	2 j	21	21	2)	AG
P13	39	($(\#)$)	B22	2k	2k	2k	2k	${ }_{(A G)}{ }^{\text {) }}$
P14	3 f	B1	B29	21	21	21	21	EON
P15	30	B8	B36	20	20	20	20	$($ (EON)
P16	30	B15	B43	2.	2 m	2m	2m	RT
P17	55	\#	B23	25	20	29	29	${ }_{(R T)}{ }^{\text {(RT) }}$
P18	2 d	B2	B30	22	2 c	2 c	2 c	TRAF
P19	2星	B9	B37	2 E	20	28	2e	(traf)
P20	2 c	B16	B44	2.	2 ,	2 r	$2 r$	1

	8G	7G	6 G	5 G	4G	33	2 G	1G
P2 1	29	AUTO	B24	2p	20	20	20	2
P22	21	B3	B31	2n	2π	20	2 n	3
P23	20	B10	B38	2d	2 d	2 l	2 d	4
P24	20	B17	B45	-	-	c¢ ${ }_{\text {c }}$	KHz	5
P25	57	SURROUND	B25	-	-	($\mathrm{cog}^{\text {cin }}$)	MHz^{2}	6
P26	40	B4	B32	-	-	EP	dB	7
P27	4 e	B1 1	B39	10	10	10	10	8
P28	4 c	B18	B46	1 n	1 n	10	in	9
P29	49	PRO LOGIC	B26	11	1	1 j	11	10
P30	41	B5	B33	1 k	1 k	1*	1 k	11
P31	40	B12	B40	1 1	11	19	1 f	12
P32	40	B19	B47	1 b	10	1 b	10	13
P33	54	(b)	B27	1 m	1 m	1.	1 m	14
P34	10	B6	B34	19	19	19	19	15
P35	1 e	B13	B41	1 c	1 c	$1=$	10	16
P36	ic	B20	B48	1 10	1 e	1 e	1 в	17
P37	\bigcirc	b	B28	$1{ }^{1}$	1.	;	1 r	18
P ≤ 8	- 1	B7	B35	10	10	\cdots	10	19
P39	10	B14	B42	1 n	1 n	17	1 n	20
P40	10	B2 1	B49	1 d	10	i	10	51

SEGMENT DESIGNATION

(3G)
(2G)
(1G)

ANODE CONNECTION

	3 G	2G	IG
Fi	GRAPHIC EQUALIZER	-	DSP SURROUND
P2	$\begin{aligned} & \text { ROCK } \\ & \text { POP } \\ & \text { JAZZ } \\ & \text { CLASSIC } \end{aligned}$	-	DISCO LIVE MOVIE HALL
P3	(ROCK)	-	(DISCO)
P4	(POP)	-	(LIVE)
PS	(JAZZ)	-	(IVOVIE)
P6	(CLASSIC)	-	(HALL)
P7	510	59	58
P8	$\begin{array}{ll} M 1 & M 3 \\ M 2 & M 4 \end{array}$	-	$\begin{array}{cc} M 1 & M 3 \\ M 2 & M 4 \end{array}$
P9	\square (M1)	-	$\square(\mathrm{M} 1)$
P10	$\square(\mathrm{M} 2)$	-	$\square(\mathrm{M} 2)$
P11	\square (M3)	B30	$\square(\mathrm{M} 3)$
P12	\square (M4)	B29	$\square(\mathrm{ML})$
P13	511	B28	51
P14	512	B27	52
P15	513	B26	53
P16	514	B25	54
P17	515	B24	55
18	BBE	B23	T-BASS
P19	516	B22	57
P20	517	B21	58

	$3 G$	$2 G$	1 G
P 21	B 20	B 20	B 20
P 22	B 19	B 19	B 19
P 23	B 18	B 18	B 18
P 24	B 17	B 17	B 17
P 25	B 16	B 16	B 16
P 26	B 15	B 15	B 15
P 27	B 14	B 14	B 14
P 28	B 13	B 13	B 13
P 29	B 12	B 12	B 12
P 30	B 11	B 11	B 11
P 31	B 10	B 10	B 10
P 32	B 9	B 9	B 9
P 33	B 8	B 8	B 8
P 34	B 7	B 7	B 7
P 35	B 6	B 6	B 6
P 36	B 5	B 5	B 5
P 37	B 4	B 4	B 4
P 38	B 3	B 3	B 3
P 39	B 2	B 2	B 2
P 40	B 1	B 1	B 1

IC BLOCK DIAGRAM－ 2

IC，BA6897S

T．S．D：THERMAL SH：－EこNN CIRCUIT
Đ．BUFFER：GRIVE Eし＝ニЕ＝

IC，M62431FP

CONTROL INPUTS			ON SWITCH	
INHIBIT	B	A		
L	L	L	$Y O$	$X O$
L	L	H	$Y 1$	$X 1$
L	H	L	$Y 2$	$X 2$
L	H	H	$Y 3$	$X 3$
H	X	X	-	-

L:LOW LEVEL
H:HIGH LEVEL

IC, TC4052BP

IC, TA7291

INPUT		OUTPUT		MOAE
IN1	IN2	OUT1	OUT2	
0	0	∞	∞	STOP
1	0	H	L	CW
0	1	L	H	CCW
1	1	L	L	BRAKE

∞ : HI IMPEEANCE
NOTE : [NFUT "H" ACTIVE

IC, CXA1553P

J DECK C.B

<TUNER SECTION >

1. Clock Frequency Adjustment

Settings : • Test point : TP1 (CLK IC770 pin30)

- Adjustment location : TC701

Method : Set to MW 1710 kHz and adjust TC701 so that the test point becomes $2160 \mathrm{kHz} \pm 0.01 \mathrm{kHz}$.
2. MW VT Check <LH>

Settings: • Test point : TP2 (VT)
Method: Set to MW 1710 kHz and check that the test point is less than 8.0 V .
3. MW VT Adjustment < HE>

Settings : • Test point : TP2 (VT)

- Adjustment location : L981

Method : Set to MW 1710 kHz and adjust L981 so that the test point becomes $8.5 \mathrm{~V} \pm 0.05 \mathrm{~V}$.

DECK-1 P, DECK-2 R / P / E HEAD

4. MW Tracking Adjustment <HE>

Settings: - Test point: TP6, TP7

- Adjustment location :

L981
.600 kHz
TC941 \qquad 1400 kHz
Method: Set up TC941 to center before adjustment. The level at 600 kHz is adjusted to MAX by L 981 . Then the level at 1400 kHz is adjusted to MAX by TC941.
5. SW VT Adjustment <HE>

Settings : • Test point : TP2 (VT)

- Adjustment location : L942

Method : Set to SW 17.9 MHz and adjust L942 so that the test point becomes $7.0 \mathrm{~V} \pm 0.05 \mathrm{~V}$.
6. SW Tracking Adjustment <HE>

Settings: - Test point : TP6, TP7

- Adjustment location :

L941 5.9 MHz

TC942 17.9 MHz

Method : Set up TC942 to center before adjustment. The level at 5.9 MHz is adjusted to MAX by L941. Then the level at 17.9 MHz is adjusted to MAX by TC942.
7. FM VT Check

Settings : • Test point : TP2 (VT)
Method : Set to FM $87.5 \mathrm{MHz}, 108.0 \mathrm{MHz}$ and check that the test point is more than 1.0 V (87.5 MHz) and less than 8.0 V ($108 . \mathrm{MHz}$).
8. AM IF Adjustment <LH>

Settings : • Test point : TP6, TP7

- Adjustment location :

L742
450 kHz
9. DC Balance / Mono Distortion Adjustment

Settings : • Test point : TP3, TP4 (DC balance) : TP6, TP7 (Distortion)

- Adjustment location : L741
- Input level : 54 dB

Method: Set to FM 98.0 MHz and adjust L 741 so that the voltage between TP3 and TP4 becomes $0 \mathrm{~V} \pm 0.04 \mathrm{~V}$.
Next, check that the distortion is less than 1.3%.
10. Auto Stop Level Adjustment

Settings: - Test point : TP5

- Adjustment location : SFR722
- Input level : 18 dB

Method : Set to FM 98.0 MHz and adjust voltage low (about 0.01 V) by SFR722. After that voltage high (about 7.0 V) by 2 dB down.
11. Auto Stop Level Check

MW
Settings: - Test point : TP5

- Input level : 50 dB

Method : Set to MW 1000 kHz (LH), MW 999 kHz (HE) and check that the test point is $40 \sim 65 \mathrm{~dB}$.

SW<HE>
Settings : • Test point : TP5

- Input level : 65 dB

Method: Set to SW 12.0 MHz and check that the test point is less than 65 dB .

FM
Settings : - Test point : TP5 - Input level : 18 dB

Method: Set to FM 98.0 MHz and check that the test point is $20 \mathrm{~dB} \pm 5 \mathrm{~dB}$.

< DECK SECTION >

12. Tape Speed Adjustment

Settings: - Test tape : TTA-100

- Test point : TP8, TP9
- Adjustment location : SFR1

Method: Play back the test tape and adjust SFR1
so that the frequency counter reads $3000 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$.
13. Head Azimuth Adjustment

Settings: - Test tape : TTA-300

- Test point : TP8, TP9
- Adjustment location : Head azimuth adjustment screw
Method : Play back the 10 kHz signal of the test tape and adjust screw so that the output becomes maximum. Next, perform on each FWD and REV PLAYmode.

14. PB Frequency Response Check (DECK 1, DECK 2)

Settings : • Test tape : TTA-300

- Test point : TP8, TP9

Method: Play back the 315 Hz and 10 kHz signals of the test tape and check that the output ratio of the 10 kHz signal with respect to that of the 315 Hz signal is $\pm 2 \mathrm{~dB}$.
15. PB Sensitivity Adjustment (DECK 1, DECK 2)

Settings: - Test tape : TTA-200

- Test point : TP8, TP9
- Adjustment location :

SFR301 (DECK 1, Lch)
SFR302 (DECK 1, Rch)
SFR303 (DECK 2, Lch)
SFR 304 (DECK 2, Rch)
Method: Play back the test tape and adjust SFRs so that the output level of the test point becomes $300 \mathrm{mV}=10 \mathrm{mV}$.
16. REC/PB Frequency Response Adjustment

Settings : - Test tape : TTA-602

- Test point : TP8, TP9
- Input signal : $1 \mathrm{kHz} / 10 \mathrm{kHz}$ (LINE IN)
- Adjustment location: SFR451 (Lch)

SFR452 (Rch)
Method : Apply a 1 kHz signal and REC mode. Then adjust OSC attenuator so that theoutput level at the TP8, TP9 becomes 171 mV . Record and play back the 1 kHz and 10 kHz signals and adjust SFRs so that the output of the 10 kHz signals becomes $0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ with respect to that of the 1 kHz signal.
17. REC/PB Sensitivity Adjustment

Settings: - Test tape : TTA-602

- Test point : TP8, TP9
- Input signal : 1 kHz (LINE IN)
- Adjustment location: SFR305 (Lch)

SFR306 (Rch)
Method: Apply a 1 kHz signal and REC mode. Then adjust OSC attenuator so that the output level at the TP8, TP9 becomes 17 mV . Record and play back the 1 kHz signals and adjust SFRs so that the output is $17 \mathrm{mV} \pm$ 0.5 dB .
18. Bias OSC Frequency Adjustment

Settings : • Test tape : TTA-615

- Test point : TP10 (C463)
- Adjustment location : L451

Method: Set to the REC mode. Adjust L451 so that the frequency counter of the test point becomes minimum.

Note :
Connect a probe (10:1) of the oscilloscope or the frequency counter to a test point TP2(VREF).

1. Focus Bias Adjustment

Make the focus bias adjustment when replacing and repairing the optical block.

1) Connect an oscilloscope to the test points TP 1 (RF) and TP2 (VREF).
2) Turn on the power switch.
3) Insert test disc TCD-782 (YEDS-18) and play back the second composition.
4) Adjust SFR 11 so that RF signal of the test point TP1 (RF) is MAX and CLEARREST.

RF signal waveform

2. Tracking Balance Adjustment

1) Connect an oscilloscope to the test points TP3
(TE) and TP2 (VREF).
2) Active the $C D$ test mode.
3) Insert test disc TCD-782 (YEDS-18) and set the traverse mode (No.4) of CD test mode.
4) Adjust SFRII so that the waveform on the oscilloscope is vertically symmetrical as shown in the figure below.
5) After the adjustment is completed, remove the connected lead wires from the terminals.

Note:

The current of the laser signal can be checked with the voltages on both sides of R28 (10ת) The difference for the specified value shown on the level must be within $\pm 6.0 \mathrm{~mA}$.

Laser current lop $=\frac{\text { Voltage across R28 }}{10 \Omega}$
3. Tracking Gain Adjustment

A servo analyzer is necessary in order to perform this adjustment exactly. However, this gain has a margin, so even if it is slightly off, there is no problem.
Focus/tracking gain determines the pick-up follow-up (vertical and horizontal) relative to mechanical noise and mechanical shock when 2-axis device operates. However, as these gains are reciprocate, the adjustment is performed at the point where both gains are satisfied.

- When gain is raised, the noise increases when the 2-axis device operates increases.
- When gain is lowered, it is more susceptible to mechanical shock and skipping occurs more easily.

When the gain adjustment is not satisfied, the symptoms below appear.

Symptoms	Gain	(Focus)
- The time until music starts becomes longer for STOP \rightarrow PLAY or automatic selection (W, Nh buttons pressed.) (Normally takes about 2 seconds.)	low	low or high
- Music does not start and disc		
continues to rotate for STOP \rightarrow		
PLAY or automatic selection (KA. WN buttons pressed.)	-	low
- Disc stops to rotate shortly after STOP \rightarrow PLAY.	low or high	-
- Sound is interrupted during PLAY. Or time counter display stops.	-	low
- More noises during the 2-axis		
device operation.		

The following is simple adjustment method

- Simple adjustment -

Note: Since exact adjustment cannot be performed, remember the positions of the controls before performing the adjustment.
If the positions after the simple adjustment are only a little different, return the controls to the original position.

Procedure:

1) Keep the set horizontal. (If the set is not kept horizontally,
this adjustment cannot be performed due to the gravity against the 2 -axis device.)
2) Insert test disc TCD-782 (YEDS-18) and play back the second composition.
3) Connect an oscilloscope to TP2 (VREF) and TP3(TE)
4) Adjust SFR13 so that the waveform appears as shown in the figure below.
(tracking gain adjustment)

VOLT/DIV: 50 mV TME/DIV: I mS

- Incorrect example

Low tracking gain
(The fundamental wave appears as compare with the waveform adjusted)

YOLT/DIV: 50 mV TME/DIV: 1 mS

High tracking gain
(The frequency of the fundamental wave is higher than in low gain)

YOLT/DIV: 50 m \ TIME/DIV: 1 mS

1. How to Activate CD Test Mode
1) Insert the AC plug while pressing the function CD button. All FL display tubes will light up, and the test mode will be activated.
2. How to cancel CD Test Mode

Either one of the following operations will cancel the CD test mode.

- Press the function button (except CD button).
- Press the power switch button. - Disconnect the AC plug.

3. $C D$ Test Mode Functions

When test mode is activated, the following mode functions from No. 1 to No. 5 can be used by pressing the operation keys.

Mode / No.	Operation	FL display	Operation	Contents
Start mode No. 1	Test mode activation	All FL light up	- Active the test mode. (CD block power supply ON)	All FL displays light up
Search mode No. 2	■ key	1110	- Laser diode illuminated under normal circumstances - Continual focus search * NOTE 1 (The pickup lens repeats the full-swing up-down motion.) * Avoid continual searches that last for more than 10 minutes.	- Laser current measurement (Across R28 resistor) FOCUS SERVO - Check focus search waveform - Check focus error waveform * FOK / FZC are not monitored in the search mode.
Play mode No. 3	4- key	E111	- Normal playback - Focus search is continued if TOC cannot be read $\quad *$ NOTE 1	FOCUS SERVO/TRACKING SERVO CLV SERVO / SLED SERVO Check FOK / FZC
Traverse mode No. 4	Il key	-1]	- During normal disc playback Press once; tracking servo OFF Press twice; tracking servo ON * NOTE 2	TRACKING SERVO ON / OFF Tracking balance (traverse) adjustment TP2 (VREF), TP3 (TE)
Sled mode No. 5	$\underset{\longrightarrow 1}{\longrightarrow} \text { key }$	All FL light up	- Pickup moves to the outermost track - Pickup moves to the innermost track * NOTE 3 (During playback, machine operates normally.)	SLED SERVO Check SLED mechanism operation

* NOTE 1: There are cases when the tracking servo cannot be locked owing to the protection circuit being operated when heat builds up in the driver IC if the focus search is operated continually for more than 10 minutes. In these cases, the power supply should be switched off for 10 minutes until heat has been reduced and then re-started.
* NOTE 2: Do not press the $1 \ll$ or keys when the machine is in the II status is active. If they are pressed, playback will not be possible after the II status has been canceled. If the $\boldsymbol{H} \rightarrow$ or keys are pressed in the II status, press the \square key and return to start mode (No. 1).
* NOTE 3: When pressing the \lll or keys, take care to avoid damage to the gears. Because the sled motor is activated when the \ll or keys are pressed, even when the pick-up is at the outermost or innermost track.

4. Operation Outline

- The operation of each mode is carried out in the direction of the arrows from the start mode as indicated in the following illustration.
- When DISC DIRECT key is pressed, test mode is operated same as pressing the PLAY key.
- When CD tray is opened by OPEN / CLOSE key while play and traverse modes, test mode goes back start mode.

CD TROUBLE-SHOOTING

Flow Chart

TAPE MECHANISM PART LIST $1 / 1$

If can't understand for Description please kindly refer to " REFERENCE NAME LIST ".

REF. NO.	. PART NO.	KANRI DESCRIPTION NO.	REF. NO.	. PART NO.	KANRI DESCRIPTION NO.
1	82-2M3-301-519	CHAS ASSY, h2	35	82-2M1-265-119	
2	82-2M1-258-110	SPR-T, PINCH L	36	82-2M1-236-019	SPR-E, TRIG
3	82-2M1-345-019	LVR ASSY, PINCH L W	37	82-2M1-239-019	CAPSTAN N 2-2-41.7
4	82-2M1-333-010	PLATE,LINK 2	38	82-2M1-322-019	SPR-T, FR60
5	82-2H1-266-11K	LVR, DIR	39	82-2M1-220-219	GEAR, IDLER
6	82-2M1-214-010	SPR-T, DIR	40	82-2M3-616-019	
7	82-2Ml-206-81K	CHAS, HEAD	41	82-2M3-616-019	RING MAGNET 4 GEAR, REEL
8	82-2M3-307-019	CUSH-G, DIA 3.7-8-3.2	42	87-046-355-019	HEAD, PH HADKH2529B(PH)
10	82-2M1-269-219	SPR-T, BRG	42	87-046-356-019	HEAD, PH HADKA2529B(PH) HEAD, RPH HADRH5581B(RPG)
10	82-ZM1-219-119	SPR-T,LINK	43	82-2M1-225-21K	GEAR, FR
11	82-2M1-210-119	GEAR, H T	44	82-2M1-226-019	
12	82-2M1-213-019	SPR-T, HEAD	45	82-2M1-228-810	SLIP DISK ASSY
13	82-ZM1-207-619	GUIDE, TAPE	46	82-2M1-338-010	BELT FR4
14	82-ZM1-283-310	S-SCREW, AZ IMUTH	47	$82-2 \mathrm{Ml}-238-81 \mathrm{~K}$	FLY-WHL ASSY,R (DECK 2)
15	82-2M1-314-119	PLATE, HEAD	47	$82-2 M 3-210-71 \mathrm{~K}$	FLY-WHL ASSY, R2 (DECK 1)
16	82-ZM1-208-119	HLDR, HEAD	48	82-2M1-235-51K	
17	82-2M1-218-019	SPR-E, HB	48	$82-2 M 1-235-51 K$ $82-2 M 3-208-61 K$	FLY-WHL ASSY,L (DECK 2) FLY-WHL ASSY, 2 (DECK 1)
18	82-2M1-263-110	LVR, EJECT L (DECK 1)	49	82-2M3-329-210	FLY-WHL ASSY,L2 (DECK 1) BELT, SBU R2
18	82-2M1-264-010	LVR, EJECT R (DECK 2)	50	82-2m1-245-210	BELT, SBU R2 HLDR,IC
19	82-2M1-222-21K	LVR, PLAY .	51	87-045-347-019	MOT,SHU2L 70(M1)
20	82-2M1-217-319	REEL TABLE	52	82-2M3-221-010	
21	82-2M1-244-510	SPR-C, BT	53	82-2M1-288-019	
22	82-2M1-285-310	SPR-C, BT L	54	80-2M6-243-019	SH, 1.63-3.2-0.5 SLT
23	82-2M1-257-019	SPR-T, CAS	55	82-2M3-304-110	PULLEY, COUPLER (DECK 1)
24	82-2M1-241-319	LVR, MC	56	82-2M3-328-110	BELT,SBU P2
25	82-2M1-242-019	LVR, CAS	57	82-2M3-216-019	
26	82-2M1-243-019	LVR, STOP	A	82-2M1-315-010	Shaft, COUPLER N(DECK 1)
27	82-2Ml-346-019	LVR ASSY, PINCH R W	B	80-2M6-207-019	$V+1.6-7$
28	82-2M1-259-110	SPR-T, PINCH R	C	82-2M3-318-019	S-SCRW MOTOR M2
29	82-2M1-240-11K	LVR,REC (DECK 2)	D	87-067-972-019	PW, 1.05-3-0.25 SLT
30	82-zM1-298-010	SPR-P, EARTH			
31	82-2M1-255-319	SPR-E,LVR DIR			
32	82-2M3-305-01K	GEAR, CAM M2			
33	82-2M1-227-21K	LVR,TRIG			
348	82-2M3-306-11K	LVR, FR M2			

82-7n1-322-019

