\bigotimes

Model Name: T315XW07 V2

Issue Date : 2010/12/16

()Preliminary Specifications(*)Final Specifications

Customer Signature	Date	AUO	Date					
Approved By		Approval By PM Director Yen Ting Chiu JAAN 7 2011						
Note		Reviewed By RD Director Eugene CC Chen <u>Guyene</u> Chen <u>Magene</u> Chen Reviewed By Project Leader Aier Chien <u>ATer Chien</u> Prepared By PM Hubert Liu <u>Hubert Liu</u> <u>Hubert Liu</u>	1/2/11					

Note Performance issue

- 1) Top, bottom side light leakage due to LGP design issue.
- 2) Whole screen with sandy Mura due to backlight Moire
- 3) Film waving due to backlight design

Optical spec.

1) Average luminance is 185~200nits < 250nits, relate to LED spec.

Design concern item

- 1) Gate COF interfere with front bezel might be damage
- 2) Side screw tilt easy and damage, suggest to enlarge the screw hole

Contents

No		
		CONTENTS
		RECORD OF REVISIONS
1		GENERAL DESCRIPTION
2		ABSOLUTE MAXIMUM RATINGS
3		ELECTRICAL SPECIFICATION
	3-1	ELECTRIACL CHARACTERISTICS
	3-2	INTERFACE CONNECTIONS
	3-3	SIGNAL TIMING SPECIFICATION
	3-4	SIGNAL TIMING WAVEFORM
	3-5	COLOR INPUT DATA REFERENCE
	3-6	POWER SEQUENCE
	3-7	BACKLIGHT SPECIFICATION
4		OPTICAL SPECIFICATION
5		MECHANICAL CHARACTERISTICS
6		RELIABILITY TEST ITEMS
7		INTERNATIONAL STANDARD
	7-1	SAFETY
	7-2	EMC
8		PACKING
	8-1	DEFINITION OF LABEL
	8-2	PACKING METHODS
	8-3	PALLET AND SHIPMENT INFORMATION
9		PRECAUTION
7	9-1	MOUNTING PRECAUTIONS
	9-2	OPERATING PRECAUTIONS
	9-3	ELECTROSTATIC DISCHARGE CONTROL
	9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE
	9-5	STORAGE
	9-6	HANDLING PRECAUTIONS FOR PROTECT FILM

 \Diamond

T315XW07 V2 Product Specification Rev.1.3

Record of Revision

Version	Date	Page	Description
0.1	2010/12/16		First release
1.0	2011/01/03	5	Update Bezel Opening & outline dimension
		7	Update DCR Interface
		8	Update AC Characteristics
		17	Update Optical Specification
		20	Update dimension
		21	Update front view
		22	Update back view
		23	Update Reliability Test Items
		26	Update PACKING METHODS
		27	Update Pallet and Shipment Information
1.1	2011/01/26	17	Update Optical spec.
1.2	2011/03/25	17	Update Optical spec.
		21	Update front view
		22	Update back view
1.3	2011/04/26	8	Update AC Characteristics
		17	Update Optical Specification
		21	Update front view
		22	Update back view
		23	Update Reliability Test Items
		*	

1. General Description

This specification applies to the 31.5 inch Color TFT-LCD Module T315XW07 V2. This LCD module has a TFT active matrix type liquid crystal panel 1,366x768 pixels, and diagonal size of 31.5 inch. This module supports 1,366x768 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in horizontal stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.

The T315XW07 V2 has been designed to apply the 8-bit 1 channel FFC interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important.

* General Information

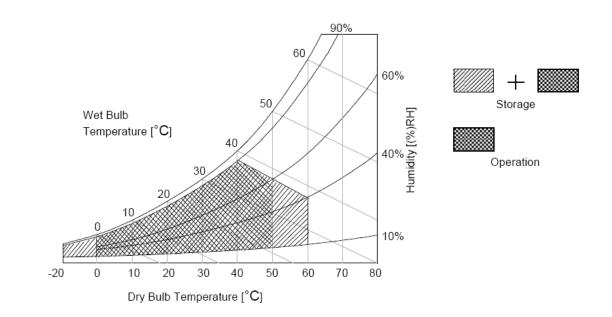
Items	Specification	Unit	Note
Active Screen Size	31.5	inch	
Display Area	697.685(H) x 392.256(V)	mm	
		mm	D: front bezel to T-con cover,
Outline Dimension	726.4(H) x 422.8 (V) x 21.7 (D)		TBD (refer to SEC module
			spec)
Driver Element	a-Si TFT active matrix		
Bezel Opening	704.8 (H) x 399.2 (V)	mm	
Display Colors	8 bit, 16.7M	Colors	
Number of Pixels	1,366x768	Pixel	
Pixel Pitch	0.51075	mm	
Pixel Arrangement	RGB horizontal stripe		
Display Operation Mode	Normally Black		
Surface Treatment	Anti-Glare, 3H		Haze=2%
Rotate Function	Unachievable		Note 1

Note 1: Rotate Function refers to LCD display could be able to rotate.

Rev.1.3

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be 39° C and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40°C or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C.

Note 3: Surface temperature is measured at 50°C Dry condition

大UO AU Optronics

T315XW07 V2 Product Specification Rev.1.3

3. Electrical Specification

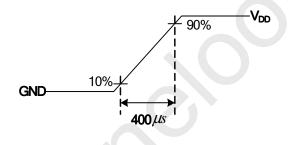
The T315XW07 V2 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit.

3.1 Electrical Characteristics

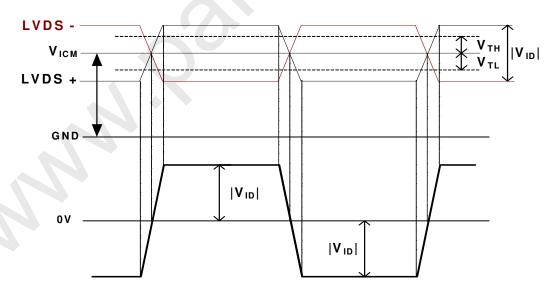
3.1.1: DC Characteristics

	Parameter	Symbol		Value		Lloit	Note
	Farameter	Symbol	Min.	Тур.	Max	Offic	note
LCD							
Power Su	pply Input Voltage	V _{DD}	10.8	12	13.2	V _{DC}	
Power Su	pply Input Current	I _{DD}		0.23	0.36	А	1
Power Co	nsumption	Pc		2.76	4.32	Watt	1
Inrush Cu	rrent	I _{RUSH})	3	А	2
	Input Differential Voltage	V _{ID}	200	400	600	mV_{DC}	3
LVDS Interface	Differential Input High Threshold Voltage	V _{TH}	+100		+300	mV_{DC}	3
	Differential Input Low Threshold Voltage	V _{TL}	-300		-100	mV_{DC}	3
	Input Common Mode Voltage	VICM	1.1	1.25	1.4	V_{DC}	3
		F _{DIM_IN}	140		240	Hz	4
DCR		D _{DIM_IN}	*		100	%	4
Interface		Symbol Min. Typ. Max Unit Init VDD 10.8 12 13.2 VDC VDC IDD 0.23 0.36 A IDD 0.23 0.36 A IDD 2.76 4.32 Watt IRUSH 3 A ge VID 200 400 600 mVDC Threshold Voltage VTH +100 +300 mVDC Voltage VIC -300 -100 mVDC Voltage VIC 1.1 1.25 1.4 VDC Voltage VIC 1.1 1.25 1.4 VDC DDIM_IN * 100 % Voltage FDIM_OUT 180 HZ DDIM_OUT * 100 % % Voltage VIH 2	4				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	%	4					
CMOS	Input High Threshold Voltage		2.7		3.3	V_{DC}	5
Interface	ower Supply Input Voltage ower Supply Input Current ower Consumption rush Current Input Differential Voltage /DS Differential Input High Threshold Voltage Differential Input Low Threshold Voltage Input Common Mode Voltage DIM_IN CR terface DIM_OUT MOS terface Input High Threshold Voltage Input Common Mode Voltage DIM_IN CR terface DIM_OUT MOS Input Low Threshold Voltage Input Low Threshold Voltage acklight Power Consumption		0		0.6	V_{DC}	5
Backlight	Power Consumption	P _{BL}	*	*	*	Watt	
Life time (MTTF)		30000			Hour	9,10

* LED driver board is designed by customer, AUO could not guarantee the value



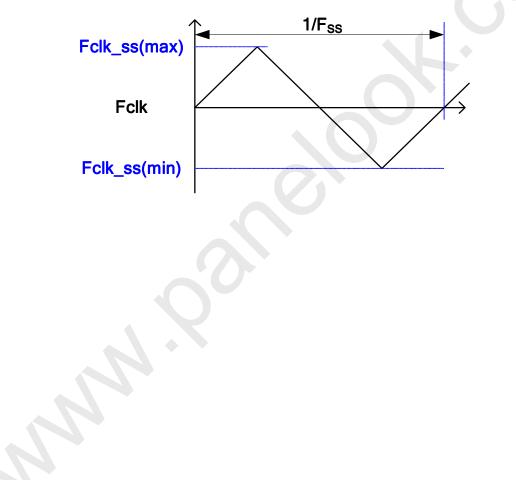
3.1.2: AC Characteristics


Parameter	Symbol			Value						
Falamelei	Symbol	Min.	Тур.	Max	Unit	Note				
Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%		Fclk +3%	MHz	6				
Receiver Clock : Spread Spectrum Modulation frequency	Fss	30		200	KHz	6				
Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5		0.4 0.5	ns	7				

Note :

- 1. V_{DD} = 12.0V, Fv = 60Hz, Fclk= Max freq, Temperature=25 °C, Test Pattern : White Pattern
- **2.** Measurement condition : Rising time = 400us

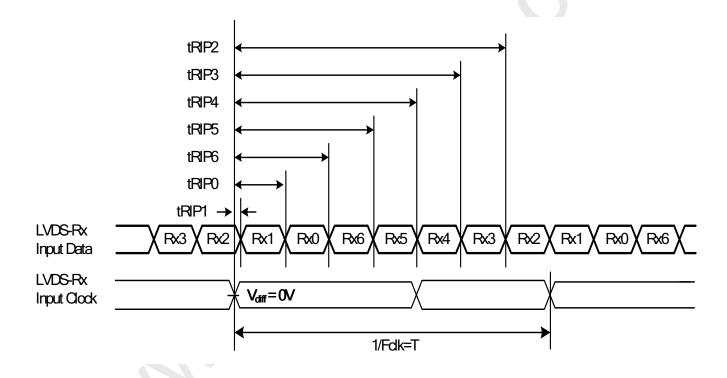
3. $V_{ICM} = 1.25V$


4. DCR Interface: Function Table

Ir	iput	Output
DCR_Enable	DIM_IN	DIM_OUT
High	PWM Input	DCR Dimming Out
Low	PWM Input	PWM Input
NC	NC	Keep High

Note.(4-1) : During the deep duty control, partial darkness or center darkness might happen due to insufficient lamp current.

Note.(4-2): At low temperature, more warm up time may be needed.


- 5. The measure points of V_{IH} and V_{IL} are in LCM side after connecting the System Board and LCM.
- 6. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures

7. Receiver Data Input Margin

Parameter	Symbol	Rating							
Farameter	Symbol	Min	Туре	Мах	- Unit Not MHz T=1/Fe ns ns ns ns ns ns ns ns	Note			
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk			
Input Data Position0	tRIP1	- tRMG	0	tRMG	ns				
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns				
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns				
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns				
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns				
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	~			
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns				

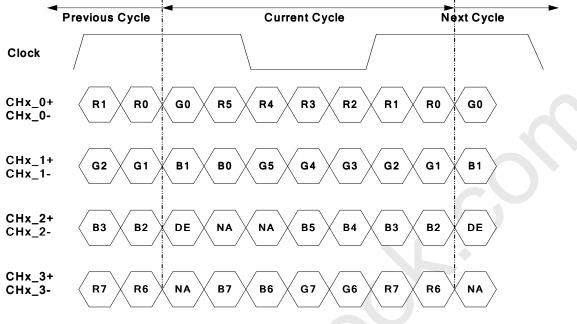
- 8. The relative humidity must not exceed 80% non-condensing at temperatures of 40°C or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C. When operate at low temperatures, the brightness of LED will drop and the life time of LED will be reduced.
- 9. The lifetime (MTTF) is defined as the time which luminance of LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C]

 $\langle p \rangle$

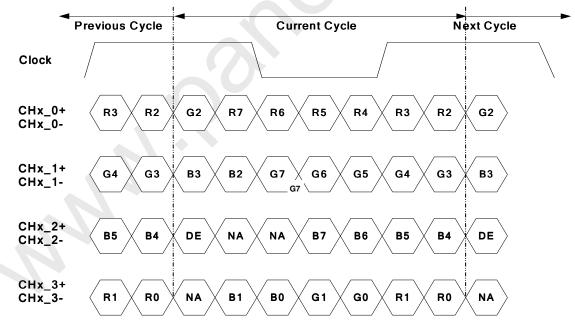
T315XW07 V2 Product Specification Rev.1.3

3.2 Interface Connections

- LCD connector: 196161-30041-3 (P-TWO, FFC connector)
- Mating connector:


viating	connector:	
PIN	Symbol	Description
1	N.C.	No connection
2	SCL	EEPROM Serial Clock
3	SDA	EEPROM Serial Data
4	GND	Ground
5	CH1_0-	LVDS Channel 1, Signal 0-
6	CH1_0+	LVDS Channel 1, Signal 0+
7	GND	Ground
8	CH1_1-	LVDS Channel 1, Signal 1-
9	CH1_1+	LVDS Channel 1, Signal 1+
10	GND	Ground
11	CH1_2-	LVDS Channel 1, Signal 2-
12	CH1_2+	LVDS Channel 1, Signal 2+
13	GND	Ground
14	CH1_CLK-	LVDS Channel 1, Clock -
15	CH1_CLK+	LVDS Channel 1, Clock +
16	GND	Ground
17	CH1_3-	LVDS Channel 1, Signal 3-
18	CH1_3+	LVDS Channel 1, Signal 3+
19	GND	Ground
		Aging pattern control
20	Aging	High(3.3V) : Aging Enable
		Open/Low(GND) : Aging Disable
21	LVDS_SEL	High(3.3V) for NS, Open/Low(GND) for JEIDA
		EEPROM Write Protection
22	WP	High(3.3V) for Writable,
		Low(GND) for Protection
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	V _{DD}	Power Supply, +12V DC Regulated
27	V _{DD}	Power Supply, +12V DC Regulated
28	V _{DD}	Power Supply, +12V DC Regulated
29	V _{DD}	Power Supply, +12V DC Regulated
30	V _{DD}	Power Supply, +12V DC Regulated

 \oslash


T315XW07 V2 Product Specification Rev.1.3

LVDS Option = High→NS

Note: x = 1, 2, 3, 4...

LVDS Option = Open/Low-JEIDA

Note: x = 1, 2, 3, 4...

3.3 Signal Timing Specification

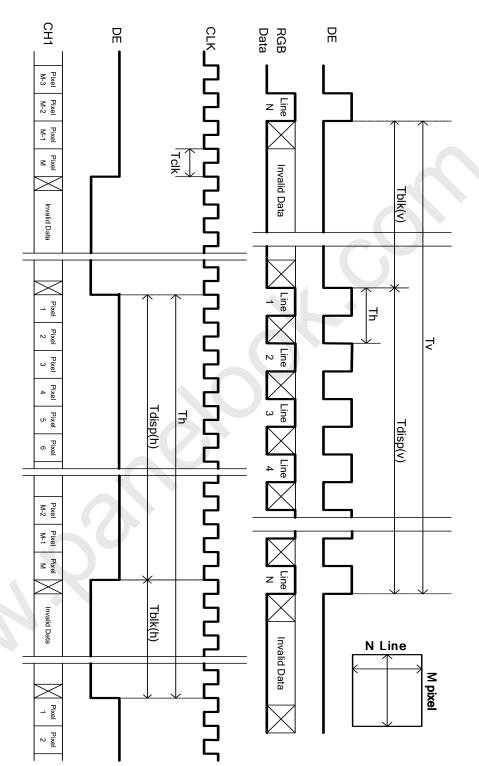
This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	Τv	784	810	1015	Th
Vertical Section	Active	Tdisp (v)		Th		
	Blanking	Tblk (v)	16	42	247	Th
	Period	Th	1460	1648	2000	Tclk
Horizontal Section	Active	Tdisp (h)		1366		Tclk
	Blanking	Tv 784 810 1015 Tdisp (v) 768 Tblk (v) 16 42 247 Th 1460 1648 2000	634	Tclk		
Clock	Frequency	Fclk=1/Tclk	50	80	86	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	43	48	53	KHz

Notes:

(1) Display position is specific by the rise of DE signal only.


Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.

- (2)Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3) If a period of DE "High" is less than 1366 DCLK or less than 768 lines, the rest of the screen displays black.
- (4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

 $\langle \mathcal{P} \rangle$

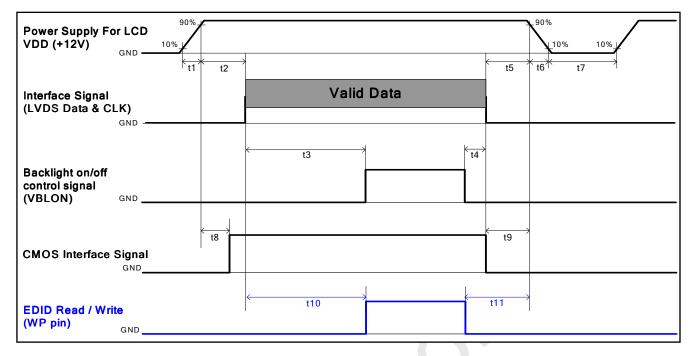
T315XW07 V2 Product Specification Rev.1.3

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

			Input Color Data																						
	Color	RED									GREEN						BLUE								
	00101	MS	В					LS	SB	MS	В					LS	BB	MSB LSB							
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G					\mathbf{X}																			ļ	
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

COLOR DATA REFERENCE


© Copyright AUO Optronics Corp. 2009 All Rights Reserved.

 $\langle p \rangle$

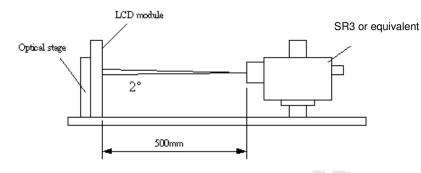
T315XW07 V2 Product Specification Rev.1.3

3.6 Power Sequence for LCD

Parameter		l lucit		
Parameter	Min. Type.		Max.	Unit
t1	0.4		30	ms
t2	0.1	O	50	ms
t3	450			ms
t4	0 ^{*1}			ms
t5	0			ms
t6			*2	ms
t7	500			ms
t8	10		50	ms
t9	0			ms
t10	450			ms
t11	150 ^{*3}			ms

Note:

(1) t4=0 : concern for residual pattern before BLU turn off.


- (2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)
- (3) When CMOS Interface signal is N.C. (no connection), opened in Transmitted end, t8 timing spec can be negligible.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of ϕ and θ equal to 0°.

Fig.1 presents additional information concerning the measurement equipment and method.

Parameter		Queebal		Values		Unit	Notes
		Symbol	Min.	Тур.	Max	Unit	
Contrast Ratio		CR	3000	3500			1
Surface Luminance (White)	L _{WH}	165	207		cd/m ²	2
Luminance Variation		δ _{WHITE(9P)}			1.43		3
Response Time (G to G)		Тү		6.5		ms	4
Color Gamut		NTSC		72		%	
Color Coordinates							
Red		R _x		0.640			
		R _Y		0.330			
Green		G _x		0.320			
		G _Y	Тур0.03	0.600	- Typ.+0.03		
Blue		B _X		0.150			
		B _Y		0.060			
White		W _X		0.290			
		W _Y		0.310			
Viewing Angle							5
x axis, right(φ=	0°)	θ _r		89		degree	
x axis, left(φ=1	30 <i>°</i>)	θι		89		degree	
y axis, up(φ=90)°)	θ _u		89		degree	
y axis, down (φ	=270°)	θ _d		89		degree	

* LED lightbar and LED backlight structure is designed by customer, AUO could not guarantee the specification. The figures above are mean of 3pcs DVT samples measurements and are for reference only.

Note:

1. Contrast Ratio (CR) is defined mathematically as:

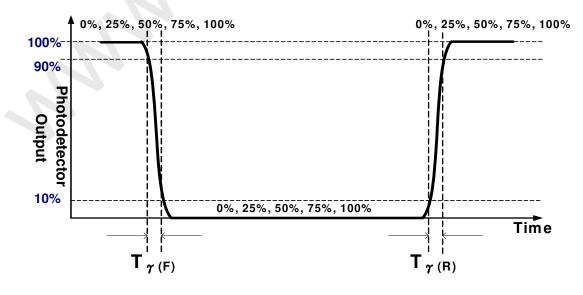
$\frac{\text{Surface Luminance of } L_{on5}}{\text{Surface Luminance of } L_{off5}}$

- Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. LED current I_F = typical value (without driver board), LED input VDDB =24V, I_{DDB}. = Typical value (with driver board), L_{WH}=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δ WHITE is defined (center of Screen) as:

 $\delta_{\text{WHITE(9P)}} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}}) / \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}})$

4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_v=60Hz to optimize.

Measured				Target		
Respo	onse Time	0%	25%	50%	75%	100%
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%
Start	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%
	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%	

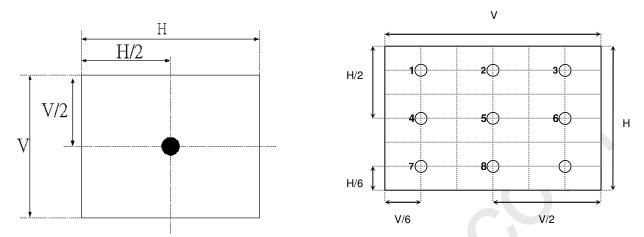

 T_{γ} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of grey(bright) " and "any level of gray(dark)".

Any level of gray (Bright) Any leve

Any level of gray (Dark)

Any level of gray (Bright)



 $\langle p \rangle$

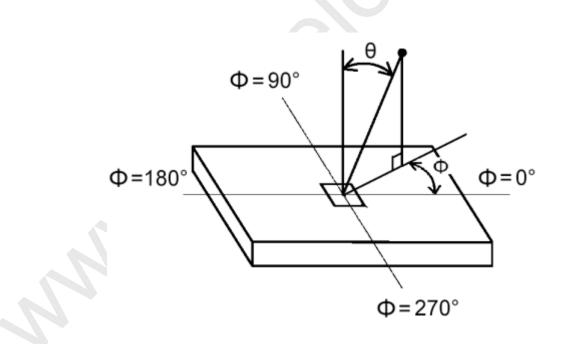

T315XW07 V2 Product Specification Rev.1.3

FIG. 2 Luminance

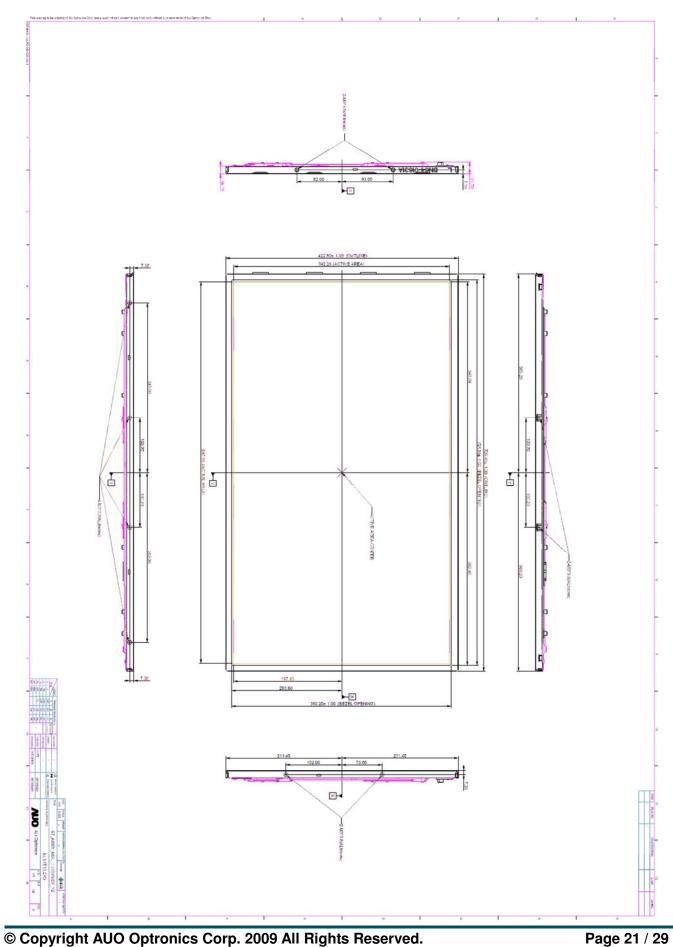
5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

FIG.3 Viewing Angle

© Copyright AUO Optronics Corp. 2009 All Rights Reserved.

5. Mechanical Characteristics

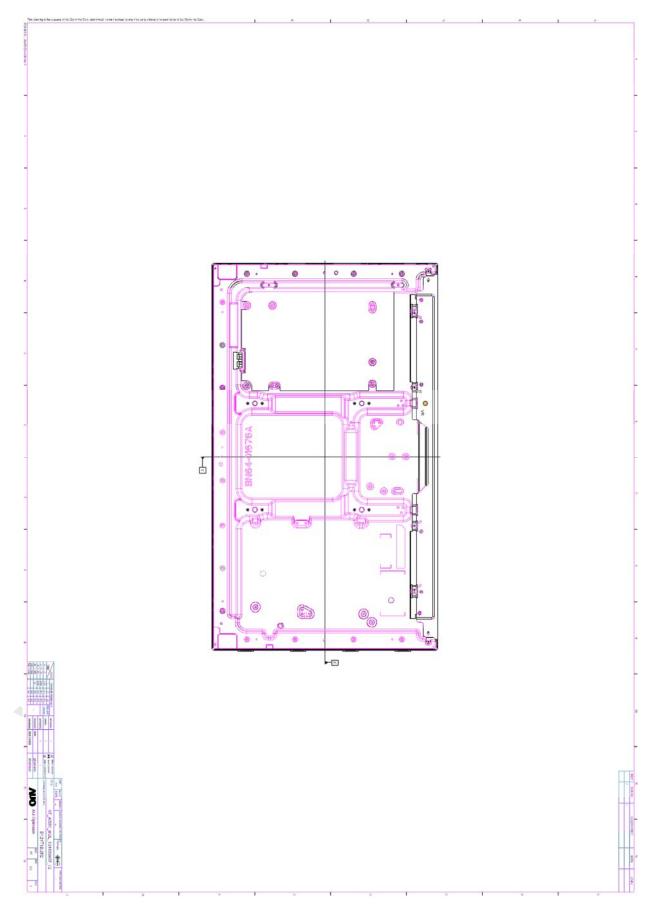
The contents provide general mechanical characteristics for the model T315XW07 V2. In addition the figures in the next page are detailed mechanical drawing of the LCD.


Item		Dimension	Unit	Note
Outline Dimension	Horizontal	726.4	mm	
	Vertical	422.8	mm	
	Depth (Dmin)	19.7	mm	to rear
	Depth (Dmax)	21.7	mm	to shielding cover
Weight	6000	0.0	g	

 \oslash

T315XW07 V2 Product Specification Rev.1.3

Front view



 \oslash

T315XW07 V2 Product Specification Rev.1.3

Back view

© Copyright AUO Optronics Corp. 2009 All Rights Reserved.

Page 22 / 29

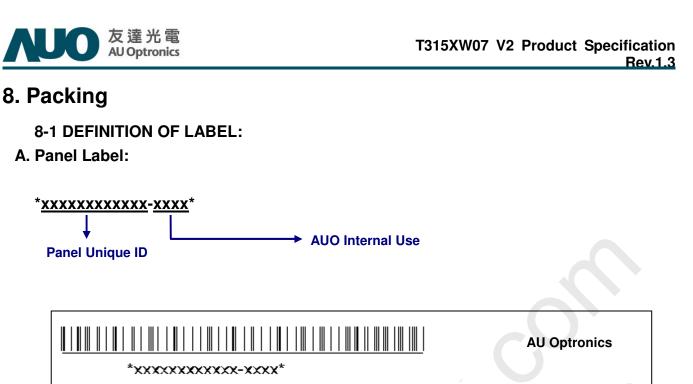
 \bigotimes

T315XW07 V2 Product Specification Rev.1.3

6. Reliability Test Items

	Test Item	Q'ty	Condition	
1	High temperature storage test	3	60℃, 300hrs	
2	Low temperature storage test	3	-20℃, 300hrs	
3	High temperature operation test	3	50℃, 300hrs	
4	Low temperature operation test	3	-5℃, 300hrs	
			Fixed place : FMB(4-corner)	
			Wave form: random 8~200Hz	
			Overall average energy level : 0.85 Grms	
			Duration : X,Y,Z 10min per axes	
			X,Y,Z: Horizontal, face up	
	Vibration test (non-operation)		Follow Customer demand.	
5		3	Bandwidth & Level :	
			Frequency PSD(g2/Hz)	
			8~13Hz 0.0265(PSD),	
			14~30Hz 0.00290(PSD),	
			31~40Hz 0.02641 (PSD),	
			41~130Hz 0.006798 (PSD),	
			131~200Hz 0.0002995(PSD)	
			Fixed place :4-corner	
	Shock test (non-operation)	3	Shock level : 30G ,11ms ±X,Y,Z axis	
6			Waveform: half sine wave	
			Direction: One time each direction	
	Vibration test (With carton)	5	Random wave (1.05Grms 10~200Hz)	
7			Duration : X,Y,Z 10min per axes	
			Leight 29 1cm (ASTMD4160 I)	
	Drop test (With carton)	5	Height: 38.1cm (ASTMD4169-I)	
8			1 corner, 3 edges, 6 surfaces	
			(refer ASTM D 5276)	

* Backlight unit is designed by customer, AUO could not guarantee the RA result of item 5~8.


7. International Standard

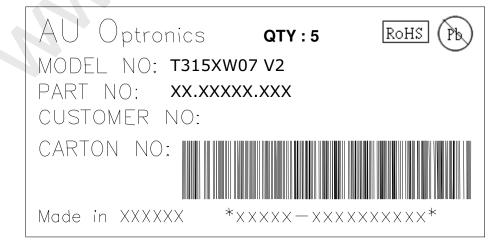
7.1 Safety

AUO don't have overall safety document, thus, AUO could not guarantee safety

7.2 EMC

- ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

Green mark description

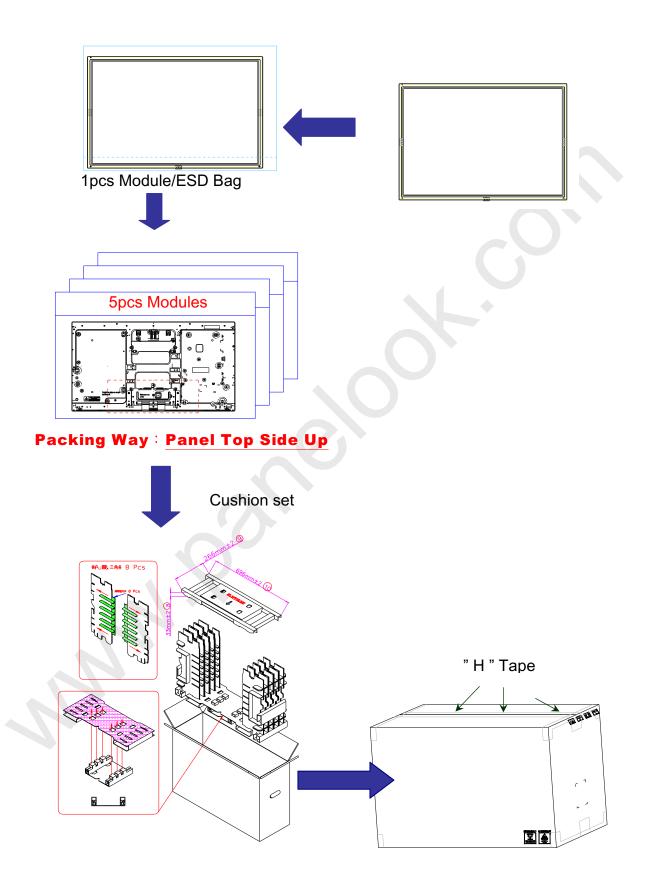

(1) For Pb Free Product, AUO will add (1) for identification.

(2) For RoHs compatible products, AUO will add RoHS for identification.

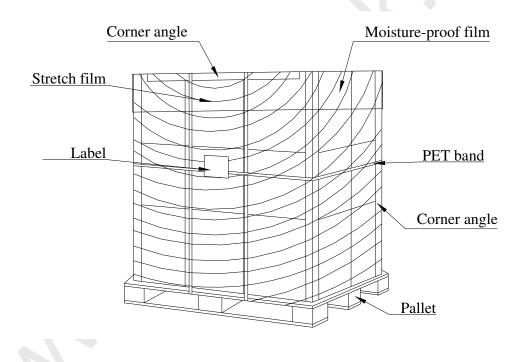
Note: The green Mark will be present only when the green documents have been ready by AUO internal green

team. (definition of green design follows the AUO green design checklist.)

B. Carton Label:



© Copyright AUO Optronics Corp. 2009 All Rights Reserved.


8-2 PACKING METHODS:

8-3 Pallet and Shipment Information

	ltem		Packing Remark		
	item	Qty.	Dimension	Weight (kg)	Facking Remark
4	1 Packing BOX	En ee /b ev	000/1.)*000/14/)*500/11)	00	Box = 1870kg
		5pcs/box	828(L)*283(W)*536(H)	30	Cushion=2180kg
2	Pallet	1	1150(L)*840(W)*132(H)	13	
3	Boxes per Pallet				
4	Panels per Pallet				
	Pallet after packing	N/A	1150(L)mm*840(W)mm*1204(H)mm	253	

10. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage:
 V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of CCFL depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall

be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.