

Treinamento POWER GUARD 1400 VA

REV	DATA
0	2/7/2009

Índice

Item	Conteúdo	Página
1	Objetivo	3
2	Introdução	3
3	Características	4 e 5
4	Diagrama em Blocos	6
5	Características Técnicas	7
6	Funcionamento do No-Break	8
7	Alarmes Sonoros	9
8	Limpeza	10
9	Precauções	10
10	Funcionamento dos Circuitos Internos	11
10.1	Funcionamento do circuito Estabilizador	11
10.2	Circuito de leitura de tensão de saída	11
10.3	Circuito Carregador	11
10.4	Circuito de Sincronismo	12
10.5	Leitura da Tensão de entrada	12
10.6	Leitura da tensão de bateria	12
10.7	Circuito Desmagnetizador	12
10.8	Fonte de Precisão 5VCC	12
10.9	Circuito de detecção de rede	12
10.10	Circuito de detecção de rede e acionamento do no break	12
10.11	Circuito Inversor	13
10.12	Circuito Microcontrolador	13
10.13	Circuito Protetor de sobrecarga	13
10.14	Circuito Protetor de sobretemperatura	13
10.15	Circuito Protetor Telefônico	13
10.16	Comunicação USB	14
10.17	Comunicação Serial	14
10.18	Fonte 12V	14
11.0	Instruções para manutenção do No-Break	15
11.1	Troca de Tap	15
11.2	Circuito de leitura de tensão de saída	16
11.3	Equipamento não reconhece tensão de entrada	17
11.4	Circuito Inversor	17
11.5	Tensão do carregador	18
11.6	No-Break não liga	19
11.7	Sinais do U6	20
11.8	Equipamento não liga saída	21
11.9	Circuito sobrecarga	21
11.10	Sensor de temperatura	22
12.0	Tensões do PG 1400 VA	23
13.0	Roteiro de Teste PG 1400VA	24
14.0	Teste do Transformador PG 1400VA	27
15.0	Alterações das placas PG 1400VA	28
16.0	Variações de Componentes entre os modelos PG 1400VA	28
17.0	Esquema elétrico	29
	Anotações	37

Treinamento Técnico 2009

Equipamento: Power Guard II

1.Objetivo: Treinamento voltado para técnicos eletrônicos da assistência técnica e credenciadas Enermax.

Tem como principal foco introduzir informações sobre o funcionamento da nova linha de equipamentos Power Guard II, para solucionar problemas, efetuar eventuais manutenções e dar suporte ao usuário.

2.Introdução

A linha de No-break's Power Guard II tem como principal característica sua facilidade de interação com o técnico e usuário.

Características:

No-break line-interativo

Inversor controlado por PWM (onda senoidal por aproximação em modo inversor)

Microcontrolador 8 bits

Carregador de bateria linear

Bateria interna de 7Ah 12V selada para PG 700VA e 2 baterias 7Ah 12V seladas para PG1400

Conector para bateria externa

Indicador visual e sonoro de pré-alarme de bateria

Proteção contra curto circuito na saída em modo rede e modo inversor

Proteção para linha telefônica

Proteção contra surtos de tensão

Proteção de sub e sobretensão

Proteção de sobrecarga

Proteção de sobretemperatura

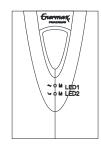
Comunicação USB ou Serial RS232 (opcionais - software de comunicação UPSilon)

Fusível de entrada

4 tomadas de saída

Auto teste inicial

Botão liga/desliga/ mute



3. Características:

- Equipamento Line-Interactive: Possui estabilização da tensão de saída mantendo sempre regulada em modo rede com máxima variação de 6%;
- **Inversor controlado por PWM:** Acionado somente na falta de energia elétrica, transforma tensão continua da bateria em tensão alternada para alimentação das cargas na saída.
- Microprocessador de 8Bits: De alto desempenho, executa instruções em menor tempo.
- Carregador Linear: Acionado automaticamente ao ser conectado a rede elétrica, carrega a bateria mantendo sempre em ótimas condições de uso:
- Bateria selada: não necessita de manutenção além de ser apropriada para o uso do no-break;
- Indicador visual e sonoro de pré-alarme de bateria: Proteção contra descarga total das baterias, o
 no-break desliga-se automaticamente no final do tempo de autonomia, respeitando o limite de
 descarga permitido, sua indicação para equipamentos da linha Power Guard II 1400 e 700, quando o
 Led2 pisca com freqüência de 1 segundo e alarme soa um Beep a cada 3 segundos;
- **Proteção contra curto-circuito na saída:** Ao detectar um curto circuito,a saída é desligada instantaneamente, a proteção atua tanto em modo bateria quanto em modo rede;
- **Proteção para linha telefônica:** Possui um circuito de proteção contra surtos de tensão na linha telefônica evitando assim a queima de modens.
- Proteção contra surtos de tensão: Possui varistor interno, protegendo as cargas contra surtos de tensão.
- Proteção de sobrecarga: Ao exceder a potência máxima, a saída será desligada, juntamente com alarme visual e sonoro. Funciona em modo rede ou bateria.
- **Proteção contra sobre temperatura no inversor:** Possui sensor de temperatura localizado no circuito inversor, caso atinja temperaturas superiores a 80°C o inversor será desligado. Esta proteção atuará somente em modo inversor;
- Tecla com função mute: Permite anular o alarme sonoro;
- BOTÃO LIGA / DESLIGA / MUTE: temporizado para evitar o acionamento acidental ou involuntário.

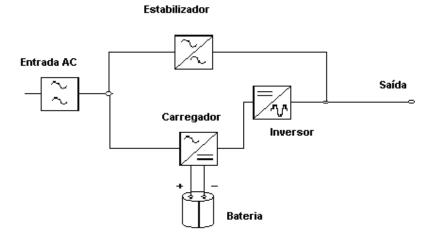
o Painel com indicação visual: Vide tabela:

Power Guard II 1400VA

LD1	LD2	Indicação
Verde (Aceso)	(Apagado)	Operando em modo
		rede
Vermelho (Aceso)	(Apagado)	Operando em modo
		inversor
(Apagado)	Vermelho	Ocorrência de
		sobrecarga
Vermelho (Aceso)	Vermelho	Operando em bateria e
		com bateria baixa

Opcional

- Comunicação USB: Permite ao usuário monitorar seu no-break via software (UPSilon) pelo computador, onde o mesmo possui uma interface simples e de fácil compreensão, onde são indicados tensões de entrada e saída, nível de carga da bateria, freqüência, modelo do equipamento, além de possuir opções de testes remotos;
- Comunicação Serial RS-232: Utiliza-se comunicação SERIAL RS-232. Através do software (UPSilon), onde o mesmo possui uma interface simples e de fácil compreensão, onde são indicados tensões de entrada e saída, nível de carga da bateria, freqüência, modelo do equipamento, além de possuir opções de testes remotos;


Descrição:

O No-break é constituído por 3 principais blocos:

- Carregador;
- Inversor;
- Estabilizador;

4.Diagrama em Blocos:

Bloco Carregador: Transforma tensão alternada em tensão continua para carga da bateria interna do No-Break;

Bloco Inversor: Com a falta de rede, o mesmo é acionado automaticamente, e transforma tensão continua da bateria interna em tensão alternada para alimentação das cargas na saída;

Bloco Estabilizador: Mantém a saída estabilizada com variação máxima de 6%, com tensão provinda da rede elétrica.

5. Características Técnicas

MODELO	PG II 700	PG II 1400	PG II 2500
Potência máxima (VA / W) FP 0,62	700 / 434	1400 / 868	2500 / 1550
Rendimento	95% (pa e 85% (pa	ara operação e ara operação er	m rede); n bateria)
Tensão de entrada (V)	115V / 2 12	5V (monovolt) 20V (bivolt aut 7V (monovolt) 20V (bivolt aut	omático) ou
Freqüência nominal da rede		60 Hz +/- 5 Hz	:
Variação máxima de entrada	para	115V = 90V~ 127V = 99V~ 220V = 187V~	151V
Tensão de saída (V)	115V (de linh	a) ou 127V e 22	0V (opcional)
Regulação de saída	+/- 5% (e +/- 69	operação pela % (operação pe	bateria); la rede)
Freqüência de saída (Hz)	60 Hz +/- 1%	6 (para operação	o em bateria)
Forma de onda do inversor	Senoidal por aproximação (PMW - controle de largura e amplitude)		
Acionamento do inversor	< 0,8 ms		
Número de tomadas na saída	4 6		6
Baterias internas (12V/7Ah)	1	2	4
Tempo de autonomia	16 a 30 minutos dependendo da carga de informática (modelo com baterias internas)		
Tempo de recarga	< 6 horas para 90% da carga		
Comprimento do cabo telefônico	1500 mm (1,5 metros)		
Comprimento do cabo de força	1300 mm (1,3 metros)		
Dimensões máximas (L x A x P) mm	115 x 170 x 356	140 x 200 x 390	160 x 236 x 471
Gabinetes		l em ABS anticl com pintura ele	

6. FUNCIONAMENTO DO NO BREAK

Conecte o cabo de força do NO BREAK [8] na tomada da rede elétrica local. A faixa de tensão de entrada da rede elétrica aceita pelo Power-Guard II está descrito abaixo:

Em uma Rede	O NO BREAK funcionará entre
elétrica de 115V	90V ~ 137V
Em uma Rede	O NO BREAK funcionará entre
elétrica de 220V	187 ~ 253V

Após conectar o cabo de força do NO BREAK na tomada da rede elétrica, pressione o botão LIGA / DESLIGA / MUTE até ouvir um BIP, o botão LIGA / DESLIGA / MUTE deve ser liberado durante o BIP. Caso o botão LIGA / DESLIGA / MUTE não for liberado durante o soar do BIP (tempo de aproximadamente 2 segundos), o NO BREAK não ligará.

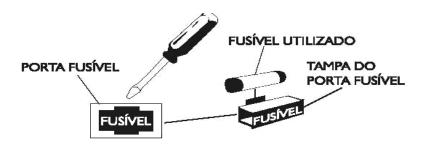
Neste instante o equipamento executará o AUTOTESTE, onde o mesmo verifica o funcionamento dos circuitos internos. Caso seja detectado algum tipo de falha interna, o NO BREAK emitirá um BIP INTERMITENTE (1 segundo ativo / 1 segundo desativado). Nesta condição o NO BREAK não fornecerá tensão para suas tomadas de saída.

Em seguida o LED VERDE acenderá, indicando ao usuário que o Power Guard II está conectado a REDE ELÉTRICA. Ligue o(s) equipamento(s) que será(ão) alimentado(s). Em caso de ausência da REDE ELÉTRICA, Subtensão / Sobre tensão (valores acima ou abaixo do citado na tabela desta página), o NO BREAK passará a alimentar os equipamentos conectados pela BATERIA seguindo a sinalização:

O LED VERDE de indicação da rede elétrica presente será apagado.

O LED VERMELHO de indicação de uso de baterias acenderá, indicando que os equipamentos conectados ao no break estão sendo alimentados pela bateria.

7. ALARMES SONOROS:

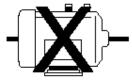

Ao pressionar o botão LIGA / DESLIGA / MUTE: O NO BREAK emitirá um BIP contínuo com duração de 2 segundos (para ligar o NO BREAK é necessário que o botão LIGA / DESLIGA / MUTE seja liberada durante o BIP).

Em caso de falha na Rede elétrica: O NO BREAK emite um BIP continuo durante 3 segundos e a cada 30 segundos emitirá um BIP durante 1 segundo.

Nível crítico de Bateria: O NO BREAK emite um BIP com duração de 1 segundo com intervalos de 3 segundos.

Falha durante o AUTO-TESTE ou curto-circuito na saída: O NO BREAK emitirá um BIP INTERMITENTE com duração de 1 segundo ativado e 1 segundo desativado. Em caso de CURTO-CIRCUITO na saída, pode ocorrer queima do fusível de entrada. O fusível deve ser substituído por outro de valor igual a tabela a seguir:

Tensão de Entrada	Modelo do Equipamento	Fusível
115V	Power Guard II 1400VA	8 A
220V	Power Guard II 1400VA	4 A


8. LIMPEZA: Para limpeza do NO BREAK desligue o botão LIGA / DESLIGA / MUTE, retire o cabo de força da rede elétrica e utilize um pano limpo. Para remoção de manchas utilize pano levemente umedecido e se necessário utilize detergente neutro. Jamais utilize produtos abrasivos como removedor, querosene entre outros, evitando danos ao produto.

9. ATENÇÃO:

- Não ligue estabilizadores de tensão nas tomadas de saída do NO BREAK.
- Não instale o NO BREAK em uma rede estabilizada cujo sistema de regulação de tensão seja por degrau.
- Não utilize NO BREAK em geradores que apresentem variações de freqüências que excedam +/- 5 Hz do valor nominal (60Hz).
- Não use o NO BREAK como chave geral para ligar e desligar o seu sistema (equipamentos ligados ao NO BREAK).
- Para medir a tensão de saída do NO BREAK só utilize multímetro TRUE RMS.
- Não utilize seu No-Break para alimentar Motores elétricos de qualquer tipo.

IMPORTANTE:

Nunca utilize este NO BREAK para alimentar equipamentos que possuam MOTORES C.A, como máquinas de lavar roupas, máquinas de costura, refrigeradores, microondas/forno elétrico, liquidificadores, furadeiras, ventiladores, reatores eletromagnéticos e aparelhos de suporte à vida, ou em equipamentos que ultrapassem a potência nominal do NO BREAK, evitando assim sobrecarga e a perda da garantia vigente.

10.0.Funcionamentos dos Circuitos Internos

1. Funcionamento do circuito estabilizador:

A tensão de entrada chega no conector CN8, onde passa pelo filtro de linha e varistor C27, C26, C25 e RV1, segue para o relé de seleção rede/bateria RL5. Deste relé segue para o relé seletor de bivolt automático RL3, que será comandado pelo microcontrolador U4 para a escolha da tensão de entrada. Em seguida, vai para os relés RL1 e RL2, que são responsáveis pelo estabilizador. O RL4 é o relé de saída, responsável pela comutação da tensão para a carga.

O transformador é ligado ao conector CN6, onde o mesmo possui bobinas de elevação e subtração da tensão, conforme selecionado pela combinação dos tap's do transformador. Os tap's são selecionados pelo microcontrolador, onde o mesmo verifica a tensão de saída mantendo sempre regulada dentro dos 6%, vide esquema pagina 32.

2. Circuito de leitura de tensão de saída:

A leitura da tensão de saída é feita através do circuito composto por R61, R55, R75, R67, R49 e CLU5B

Na saída do pino 7 do CI U5B temos uma amostra do sinal de saída que consiste em um semi-ciclo da senóide, que é injetada no pino 26 do microcontrolador U4, onde o mesmo irá verificar os parâmetros e acionar os relés do estabilizador para que a tensão de saída fique sempre dentro da faixa de +/-6% (em modo rede), vide esquema pagina 33.

3. Circuito carregador:

O conector CN9 recebe a tensão AC destinada ao carregador e passa por um retificador de onda completa D17 e D19, e é filtrada via capacitor C24, seguindo para o CI U7 (LM317 - regulador linear), o resistor R56 limita a corrente do carregador.

O diodo D5 tem a função de bloqueio, evitando que a bateria descarregue quando o nobreak estiver desconectado da rede elétrica. O carregador é acionado com a presença da rede, após o relé de rede/bateria RL5 ser acionado, aciona o circuito constituído pelos transistores Q7, Q8, PTC e R41, o PTC é um termostato e está fixado no dissipador do CI U7, quando o mesmo atua por sobretemperatura, desliga o transistor Q8 e por sua vez desliga o carregador, se a temperatura diminuir o transistor é acionado novamente e o regulador volta a funcionar, vide esquema pagina 29.

4. Circuito de sincronismo

O sincronismo é feito por R48, R27, R46, R13 e CI U5D. A saída do operacional U5D é atenuada via R46 e R13 e segue para o microcontrolador U4.

5. Leitura da tensão de entrada

A leitura da tensão de saída é feita através do circuito composto por R73, R65, R53, R72, R64 e CI U5A.

Na saída do pino 25 do CI U5A temos uma amostra do sinal de entrada que consiste em um semi-ciclo da senóide, que é injetada no pino 1 do microcontrolador U4, onde o mesmo irá efetuar a leitura da tensão de entrada. vide esquema pagina 33.

6. Leitura da tensão de bateria

Os resistores R23 e R22 formam um divisor resistivo que gera a amostra de tensão da bateria para o microcontrolador. Os capacitores C1 e C7 servem para filtragem. vide esquema pagina 33

7. Circuito desmagnetizador

Este circuito tem como sua principal função, diminuir spikes no sinal de saída em modo inversor. Quando o equipamento opera em modo inversor o transformador está magnetizado, como o inversor funciona como uma chave (trabalhando sempre em alta freqüência) e o enrolamento do transformador está ligado diretamente no inversor, necessitamos de retirar esta energia armazenada no enrolamento. Então utilizamos um circuito chamado desmagnetizador. O microcontrolador U4 comanda o desmagnetizador via pino 4, que passa pelo resistor R34 e conecta-se ao pino3 do U2A, no pino 2 desse operacional é conectado uma fonte estável de 2,5V utilizada como referencia, quando o nível do sinal do pino 3 estiver menor que 2,5V ficara em nível zero no pino1, este sinal é utilizado para acionamento do mosfet (M2). Este circuito força um curto-circuito no enrolamento do transformador durante um curto período de tempo, fazendo com que a energia acumulada no enrolamento seja retirada, o FET (M2) é responsável em controlar este curto-circuito. O resistor R70 limita a corrente no FET. vide esquema pagina 33.

8. Fonte de 5Vcc

Este circuito fornece 5 Vcc estáveis para o microcontrolador, utiliza-se um regulador de precisão LE50ABZ (U8). Os componentes C19, C18, C16 e C17 compõem o filtro para a fonte. Graças à alta precisão deste regulador, não são necessários ajustes nesta placa de controle. vide esquema pagina 35.

9. Circuito de detecção rápida de Rede

Através da fase de entrada atenuada que é retificada meia onda por D14 é conectada no pino 1 do U6(opto acoplador), o diodo zener DZ4 possui a função de bloquear qualquer tensão acima deste valor (evitando a queima do opto), gera um sinal retangular que passa pelos resistores R44,R43 e conectado a base do Q9 que em seu emissor possui um zener de 2,7v para manter alimentação na base do transistor Q6 que gera a fonte auxiliar através da tensão Vbat que está conectado ao emissor de Q6, quando a fonte auxiliar "acorda" o microcontrolador já está sendo alimentado pela fonte de 5Vcc, onde o mesmo já inicia as verificações de rede de entrada (seleção Bivolt), sincronismo, estabilizador, vide esquema pagina 30.

10. Circuito de detecção de rede e acionamento do no-break

Quando o botão de liga/desliga/mute (presente na placa 10.10.121R1) é acionado, o transistor Q9 é saturado via C2 e R2, que por sua vez satura o transistor Q6, com isso, toda a eletrônica da placa é energizada. Caso exista nível lógico 1 no pino 5 do microcontrolador U4, significa que o botão foi ligado e se o mesmo estiver pressionado dentro do tempo estipulado (dois segundos, vide operação do equipamento item 6), o microcontrolador envia nível lógico 1 para a base de Q9 (via pino 28), mantendo o circuito ligado e iniciando o processo de geração de PWM, supervisão de bateria e alarme sonoro.Quando o no-break está conectado à rede elétrica, o opto-acoplador U6, gera em sua saída um sinal retangular em 60 Hz para a base do Q9 . Nesse caso, a fonte de toda eletrônica mantem-se ligada e o carregador de baterias está ativo (se a rede estiver dentro da faixa aceitável). Caso o botão liga/desliga/mute seja acionado, todo o processo acima é refeito, com a diferença de que o sistema agora estará em modo estabilizador, vide esquema pagina 30.

11. Circuito Inversor

O inversor deste no-break está na configuração push-pull. Os FET's M3 e M1 são utilizados para chavear os "braços" do enrolamento do inversor. Os CI's U2C e U2D recebem o sinal de PWM do microcontrolador e eleva os níveis de 5 vcc para 12 vcc e seguem para os gates dos FET's para controlar seu chaveamento. O CI U2B é responsável pela deteccão de sobre corrente nos FET's.

Quando os FET´s estão trabalhando em estado normal, os diodos D4 e D15 mantém o pino 5 do CI U2B em nível baixo, fazendo com que a saída deste operacional fique em nível 0. Se ocorrer sobre corrente, o nível no pino 5 sobe, fazendo com que a saída do operacional vá para nível 1, provocando o corte no sinal de PWM nas saídas de U2C e U2D, diminuindo a tensão do inversor. Com isso, o microcontrolador detecta uma subtensão de saída, bloqueia o PWM e desliga o inversor, vide esquema pagina 34.

12. Microcontrolador:

O microcontrolador é alimentado pela fonte de precisão 5Vcc, e possui um oscilador de 16 MHz. Ele é responsável pelo gerenciamento de todo o sistema.

Funções do microcontrolador:

Seleciona os Tap's de regulação:

Mantém a fonte ativa (SELO):

Aciona relé de seleção bivolt;

Aciona relé de Rede/Bateria:

Aciona relé de saída:

Aciona Desmagnetizador;

Gera sinal de PWM;

Bloqueia PWM ao verificar falha;

Interpreta os parâmetros de tensões de entrada, saída, inversor, bateria, temperatura e corrente de saída:

Aciona o alarme sonoro:

Envia sinais para comunicação USB/RS232;

13. Circuito proteção de sobrecarga:

Este circuito gera parâmetros de tensões proporcionais à corrente consumida na saída do equipamento.

Na fase de saída, o transformador de corrente TC1 e componentes adjacentes geram a amostra de corrente. Estes níveis são enviados para o pino 23 do microcontrolador. vide esquema pagina 32

14. Proteção de sobretemperatura no inversor:

O sensor de temperatura MCP9701 CI U3 gera uma tensão proporcional à temperatura do inversor, caso a temperatura do inversor ultrapasse os 85°C, o microcontrolador interpreta o nível de tensão como sendo de sobre temperatura e desliga automaticamente o inversor, desligando assim também a saída, vide esquema pagina 31.

15. Circuito Protetor Telefônico

Neste circuito utiliza-se varistores VR1 e VR2 para proteção contra surtos de tensões na linha telefônica. Os resistores R11 e R10 funcionam como fusistores, interrompendo o circuito em caso de surtos.

16. Comunicação USB (placa 10.10.124R1)

Possui 2 opto-acopladores CI1 e CI3 para isolação entre a placa de controle do no-break e o computador pessoal. O microcontrolador CI2 faz a conversão RS232 para USB.

17. Comunicação Serial (placa 10.10.085R2)

Placa de interface RS-232. Possui uma fonte isolada de 5V formada pelos diodos D1,D2,D3 e D4, Cl2, C7 e C1, que alimenta o CI Max232 Cl1. Os opto-acopladores Cl3 e Cl4 fazem a isolação entre o computador pessoal no qual o equipamento será ligado e o no-break.

18. Fonte 12V

Para equipamentos que possuem 2 baterias em série (1400VA), utilizamos um circuito regulador de 24V para 12V, gerando a fonte necessária para os demais circuitos através do regulador U1 LM7812, vide esquema pagina 30.

11.Instruções para Manutenção do No-Break PG 1400 VA

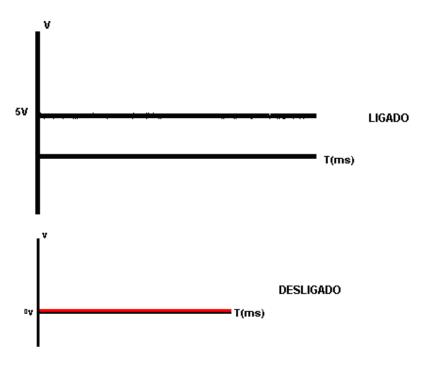
Este item será utilizado por técnicos autorizados "Enermax", para esclarecer e direcionar os reparos em No-Break's da linha PG 1400.

Ao ser detectado a necessidade efetuar algum reparo nos circuitos do no-break deve-se sempre seguir as instruções contidas neste manual, após entendermos um pouco mais sobre o funcionamento do produto e suas características podemos analisar com maior clareza os defeitos ocorridos.

Procedimento vital para verificação inicial de defeitos

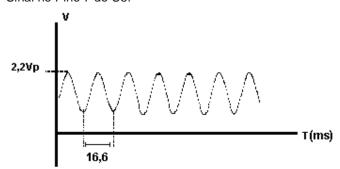
Ao receber o No-break sempre seguir este procedimento:

- 1. Verificação Mecânica: ao receber o equipamento verifique se o mesmo sofreu algum tipo de dano físico em seu gabinete, como quebra trincas, furos, etc. Confira a etiqueta de garantia, se não está adulterada ou violada. Verifique a fiação interna, se há rompimentos de cabos, se há cabos derretidos, oxidados, com mau contato em seus terminais. Verifique se o fusível de entrada, localizado no gabinete está danificado. Verifique o cabo de alimentação de entrada, se está danificado, faltando o pino do terra ou com os terminais carbonizados, abra a tampa frontal do equipamento e retire a bateria, verificando se a mesma sofreu algum tipo de dano, como carbonização de seus terminais, vazamento, etc.
- 2. Verificação Visual do circuito interno: após desconectar a bateria, retire os cabos conectados á placa de controle, e verifique se a mesma possui algum tipo carbonização, se há trilhas rompidas, componentes quebrados ou carbonizados.


Após esta seqüência de avaliação visual, prosseguimos para os procedimentos de testes, que serão descritos abaixo, conforme o circuito citado.

Alguns problemas:

- 1. Troca de Tap (Regulação do Estabilizador):
- Acionamento dos relés de regulação: Ao efetuar o teste de regulação de tensão de saída do no-break, o mesmo não aciona os relés, posicione o multímetro ou ponta de prova do osciloscópio em R58 ou R57 (Resistores de base dos transistores Q10 e Q11) verifique se ao variar a tensão na entrada do equipamento os níveis alternam de 0V para 5V, ou de 5V para 0V (tomando sempre por base que tanto o terra do osciloscópio ou a ponta negativa do multímetro(preto) deverá sempre ser conectada ao –BAT(CN10)), caso o sinal alterne porém os relés não são acionados, verifique se os transistores Q10 e Q11 estão danificados, verifique se os diodos D7 e D8 estão danificados, verifique se há 12Vdc no catodo dos diodos D7 e D8 verifique se há algum relé com os contatos colados medindo seus contatos,se algum dos componentes citados acima estiverem danificados efetue a troca e siga as instruções de teste citado (Toda e qualquer medição tanto de resistência, continuidade ou medindo em escala de diodo, deve ser feita com o equipamento desligado);


Sinal de acionamento na base dos transistores:

Circuito de Leitura de tensão de saída:

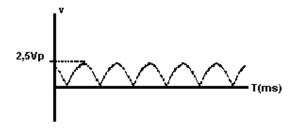
2. Tensão de saída fora do especificado: Verificar no circuito de leitura de tensão de saída os resistores R61,R75,R55,R67,R50, verifique se no pino 26 do U4 possui o sinal abaixo:

Sinal no Pino 7 do U5:

Se não houver nenhuma anormalidade no circuito citado, desligar o equipamento, desconectar o transformador, e efetuar os testes para verificação das tensões no mesmo (Roteiro de Teste anexado ao final da apostila);


3. Equipamento não reconhece tensão de entrada:

Verifique se há tensão no conector CN8, depois verifique se os transistores Q1 e Q14 estão saturados, caso Q1 esteja saturado e Q14 não verifique o circuito de acionamento do relé bivolt, verifique se o resistor R59 está em nível 0V.Caso os sinais estejam normais verifique o relé RL3.


Verifique o circuito de leitura de tensão de entrada, nos resistores R73,R65,R53,R72 e R64, verifique o sinal nos pinos 10 e 9 do U5(LM324) e na saída pino 1(U5). Verifique o sinal de sincronismo do equipamento R47, R48, R27 e no pino 14 do U5. Compare os sinais obtidos com os abaixo (tensão de entrada em 115V):

Sinais de Leitura da tensão de entrada:

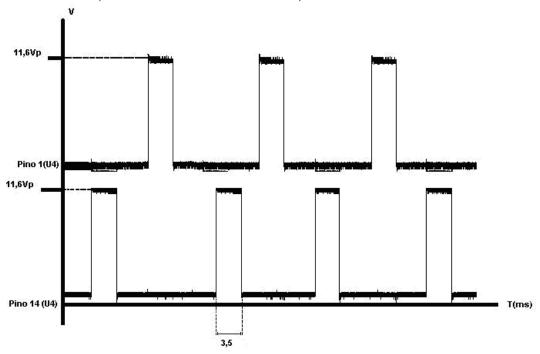
Sinal no pino 3 e 2 do U2(LM324)

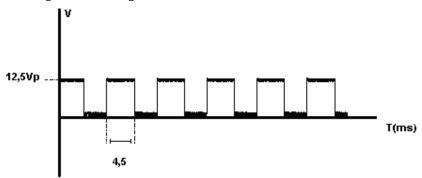
Sinal no pino 1 do U5

4. Inversor com defeito:

Ao ligar o equipamento o mesmo inicia o auto teste, porém após o teste o mesmo emitirá um beep continuo durante alguns segundos, isso significa que o inversor está com falha, desconecte os cabos do inversor CN5 e CN8, verifique se no pino 3 e 2 do U2(LM324) Possui um sinal de PWM e nos pinos 1 e 14 do U5(LM324), verifique se os fet´s estão danificados, caso não estejam siga o circuito e verifique se o sinal chega nos gates dos mosfet's, verifique com o multímetro se não há nenhum diodo danificado ou resistores abertos, utilizando o multímetro em escala de diodo meça os mosfet's.(para medir os mosfet's é necessário que os cabos do inversor estejam desconectados).

Verifique se no pino 7 do U5(LM324) está em nível 0V, se possuir um sinal de onda quadrada, automaticamente o inversor será bloqueado, verifique portanto se os mosfet's estão em curto, se há diodos em curto ou uma sobrecarga no inversor.


Em modo inversor o sinal de saída está distorcido, verifique os pulsos de PWM, nos pinos 8 e 14 do U2(LM324), verifique se nos componentes do filtro de saída R76 e C28 estão danificados. Verifique se o circuito desmagnetizador está funcionando corretamente, verifique se há um sinal de onda quadrada no resistor R69.(Freq = 120Hz);


Meça as junções do mosfet M2 e verifice se o mesmo não está em curto e verifique se o resistor R70 está aberto.

Verifique se no CN9 se entre os cabos violeta e cinza possui uma tensão de aproximadamente $30\,\mathrm{V}$.

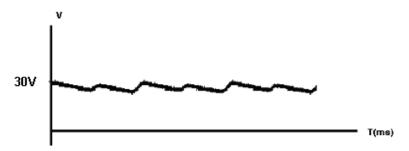
Sinais de PWM: (Para uma tensão de bateria de 24V)

Sinal do gate do desmagnetizador:

5. Tensão de carga da bateria está fora do especificado:

Verifique os resistores R56 e R39 e diodo D5.

Verifique se o U7 LM317 não está em curto, meça as junções em escala de diodo.

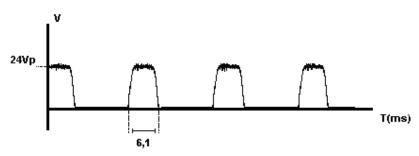


Verifique se o acionamento do carregador se da ao ligar o equipamento na rede elétrica, verificando se o Q8 está saturado.

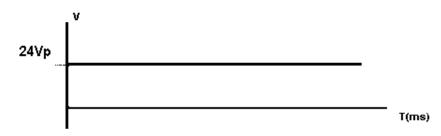
Verifique há tensão no conector CN9 entre preto e violeta e preto e cinza, aproximadamente 25 V. Verifique entre o –Bat e o pino 2 do U7 se existe uma tensão de 27 Vdc, e no pino 3 uma tensão de 30Vdc.

Se a corrente de carga estiver fora dos padrões verifique o resistor R56 e o diodo D5.

Sinal Retificado pino 3 doU7, para um rede com 115V:



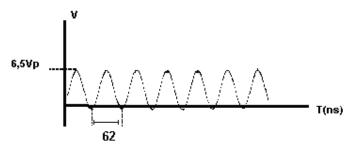
- 6. O no-break não liga ao ser pressionado o botão:
- Verifique as conexões da bateria;
- Verifique o fusível de bateria FS1 e o FS2 (40 A);
- Meça a tensão da bateria, se a mesma estiver abaixo de 19 V o equipamento não ligará;
- Verifique se no coletor do Q6 BD140 (+Bat) possui a tensão referente à bateria (aproximadamente 24 V);
- Pressione o botão liga/desliga e verifique se no catodo do DZ1 existe uma tensão de 2,7V, então meça no emissor do Q6 BD140 se existe 24V;
- Se ao pressionar a chave o equipamento emite um beep, porém não mantém o circuito ativo, verifique o capacitor C2(4,7μf) e resistor R02 (5K6), verifique também a fonte de precisão de 5V U8 (LE50) verifique se no pino 3 existe 12V e no pino 1 existe 5V;
- O equipamento ligado na rede elétrica, verifique os sinais no U6 4N25 pino 4 e pino 1, verifique o sinal na base do Q9;
- Verifique o sinal de fase de entrada no pino 1 do U6(4N25);
- Verifique no pino 28 do U4 se está em 5V;
- Verifique o circuito de leitura de tensão de bateria, resistores R23, R22, C7 e C1;
- Verifique nos pinos 9 e 10 do U4 se há o sinal do oscilador;
- Verifique se há 5V no pino 7 do U4;



7. Sinais no U6(4N25)

Sinal no Pino 4:

Sinal no Pino 5:

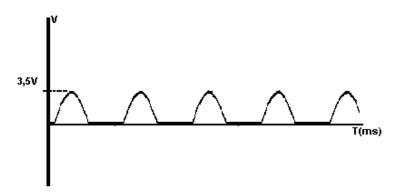


Sinal no Pino 6:

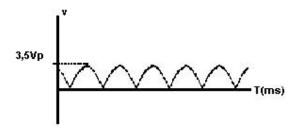
Sinal do Oscilador:

8. Equipamento não liga a saída:

O fato de não ligar a saída, pode ser ocasionado por vários fatores, falha no inversor, bateria baixa, falha no circuito da fonte ou mesmo o circuito de acionamento do relé de saída.


- Verifique no pino 7 do U4 se há 5V;
- Verifique se o Q13 está saturado, verifique o diodo D10, e se o RL4 está colado;
- 9. Circuito de sobrecarga: Equipamento liga, funciona durante ±6 seg e desliga, indicando sobrecarga via led e soando um beep a cada 1 segundo:
- Ocorrência de sobrecarga na saída do equipamento verifique nos diodos D11e D12, se há sinal retificado meia onda, depois verifique se os diodos estão em curto, confira os resistores R42 e R62, o sinal maior que 2,5V no pino 23 do U4 o equipamento entrará em sobrecarga;
- Na ocorrência de sobrecarga o fusível de entrada de rede, ou o fusível de proteção do inversor FS1 localizado na placa de controle podem abrir.

Sinal no pino 23 do U4



Sinal nos diodos D11 e D12 (utilizando carga não linear):

Sinal nos diodos D11 e D12 (utilizando carga resistiva):

10. Sensor de Temperatura: Equipamento operando em modo inversor e depois de algum tempo desliga sem soar nenhum alarme, indica que houve sobre temperatura no inversor, verifique o circuito do sensor de temperatura U3(MCP9701), verifique se no pino 1 do U3 possui 5v e no pino 2. 2,5V, conforme a temperatura aumenta diminui a tensão no pino2, verifique se o equipamento não liga, isso pode ser ocasionado pela queima do sensor U3.

OBS: Todos os sinais e testes da apostila, foram obtidos com o equipamento alimentado à uma rede 115V

Niveis de Tensão		
	U2(LM3	324)
Pino	Bateria (V)	Rede (V)
1	5,4	0
2	2,5	2,5
3	2,5	0
4	11,8	11,88
5	0,11	0
6	1	1
7	0	0
8	2,7	0
9	2,7	2,65
10	1,35	0
11	0	0
12	1,35	0
13	2,6	2,64
14	2,6	0

Niveis de Tensão		
	U5 (LM 3	324)
Pino	Bateria (V)	Rede (V)
1	2,5	2,5
2	2,5	Sem Leitura
3	2,5	Sem Leitura
4	11,88	11,88
5	2,5	2,5
6	2,5	2,5
7	2,5	2,5
8	2,5	2,5
9	2,5	2,5
10	2,5	2,5
11	0	0
12	2,5	Sem Leitura
13	2,5	Sem Leitura
14	5,4	5,2

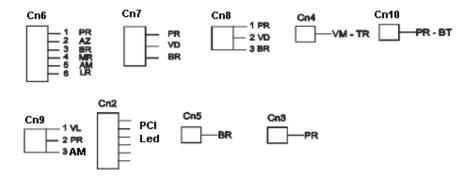
As tensões obtidas possuem uma tolerância de 3%

Usar multímetro true RMS

Valores obtidos para uma rede de 115V

	Niveis de Tensão		
	U6(4	N25)	
Pino	Bateria (V)	Rede (V)	
1	-3,48	39	
2	2,42	50	
3	0	0	
4	1,86	9,65	
5	24,2	25,7	
6	1,8	8	

Nivois de Tanção		
Niveis de Tensão		
U4(ATMEGA 88)		
Pino	Bateria (V)	Rede (V)
1	0	0
3	0,4 5	5
4		0
5	2,3	0
6	5	0
7	5	5
8	0	0
9	Sem Leitura	Sem Leitura
10	Sem Leitura	Sem Leitura
11	4,9	5
12	0	5
13	0	0
14	1,9	1,8
15	1,26	0
16	1,26	0
17	0	0
18	0	0
19	0	0
20	5	5
21	5	5
22	0	0
23	0	0
24	3	3,2
25	2,5	2,5
26	2,5	2,5
27	0,3	0,3
28	5	5



Instrumentos necessários para o teste:

- Osciloscópio digital ou analógico de 20 ou 60MHZ, com dois canais;
- Multimetro digital "True Rms";
- Alicate amperímetro AC/DC;
- Carga não linear ajustável com fator de potência 0,7;
- Fonte de alimentação variável 0Vdc 30Vdc e 3A;
- Variac;

PROCEDIMENTOS

- Retirar todos os resíduos (resto de fiação,parafusos) de dentro do aparelho, com jato de ar comprimido;
- **2.** Inspeção visual: Verificar na placa de controle se existe curtos de solda, componentes faltando ou danificados;
- 3. Conferir fiação e as polaridades seguindo o especificado;

*Verificar a polaridade dos cabos de bateria

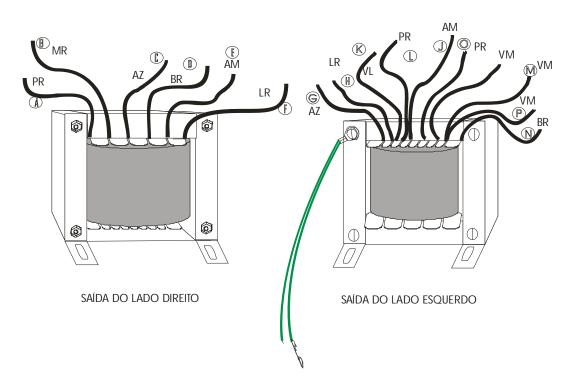
Vermelho + preto -

- 4. Após conferir a polaridade da fiação, desconectar os cabos dos conectores CN2,CN3,CN4,CN5,CN6,CN7,CN8,CN9 E OS CABOS DE BATERIA;
- 5. Conectar flat-cable (painel frontal) no CN2.
 Com uma fonte de tensão CC variável 0-30 Vdc/3A, ligada inicialmente em 0V, ligar o positivo da fonte no CN2(+) da placa e o negativo no CN5 (-);
- **6.** Ajustar a tensão da fonte CC para 12,5 Vcc, verificar a corrente consumida, se ela estiver alta pode haver algum curto no circuito do no break.

- 7. Posicionar a ponta do osciloscópio no pino 8 do operacional U2C, e a outra ponta no pino 4 CN1 da placa.
- 8. Ao pressionar o botão (liga/ desliga/ mute) o sinal do pino 4 do CN1 sobe para 5Vcc e ao ligar a placa durante um curto período no pino 8 do U2C aparecerá um sinal retangular de amplitude ±12V e sua largura de pulso aumentará aos poucos, logo após o equipamento desligará automaticamente.
- 9. Posicione a ponta do osciloscópio no pino 14 do U2D e repita o item 8.
- *Testes efetuados acima apenas para verificação dos sinais, o equipamento não se mantém ligado por conta da proteção dele.
- 10. Conecte todos os cabos do ao break seguindo a indicação do item 3 (verifique o aperto dos parafusos nos conectores CN5 e CN3);
- 11. Posicione a ponta do osciloscópio na saída do no break, ligue o equipamento em Dc start, ou seja, sem conectar rede na entrada, verifique se ele possui tensão na saída e confira o valor com o especificado. Verifique no osciloscópio a amplitude do sinal de saída em aproximadamente 175V de pico a pico (115V rms).
- 12. Desligue o equipamento;
- 13. Posicione a ponta do osciloscópio na saída do no break. Conecte o equipamento ao variac (certifique se que ele encontra-se em 0V), suba a tensão do variac , e com aproximadamente 92 V(entrada) o equipamento aciona os relés de seleção (bivolt) e rede /bat. Mantenha a tensão em 115 V (nominal). Ligue o no break e verifique se o mesmo executa o auto teste (soará um bip contínuo, até acender o led verde) após o auto teste o mesmo ligará a saída. Verifique a amplitude do sinal de saída aproximadamente 175V de pico a pico (115V rms);
- 14. Desligue o equipamento;
- 15. Conecte a bateria ao nobreak;
- 16. Ligue o equipamento novamente, com o variac na entrada do mesmo e verifique a regulação de saída, se está dentro dos parâmetros especificados (108V à 122V ±1%), com carga de 30% e depois 90%, verificar a regulação do estabilizador para as seguintes faixas:

115V = 90V a 138V;

220V =187V a 253V;


17. Verificar se o no break entra em modo inversor com tensões abaixo de 90V e acima de 138V na faixa de 115V e tensões abaixo de 187V e acima de 253V na faixa de 220V:

- 18. Desconecte as cargas com o equipamento ligado (rede nominal), desconecte o cabo CN5 da placa, e verifique entre CN5 e CN10 se a tensão do carregador é de ± 13,5 Vdc, conecte novamente o cabo CN5 na placa, e com o alicate amperímetro em escala DC, verifique a corrente no cabo vermelho (+) que sai do transformador e conecta a bateria, a corrente deve estar por volta de 500mA à 1,2A (irá variar conforme a bateria do equipamento);
- 19. Desligue o equipamento;
- 20. Conecte 100% da carga não linear;
- 21. Retire-o da rede elétrica (alimentação de entrada);
- **22.** Ligue o equipamento em "DC start", verifique a tensão de saída e se mantém sinalização led vermelho;
- 23. Conecte-o a rede elétrica, e verifique se ele transfere para o modo rede , mantendo o led verde aceso. Diminua a carga para 50% e retire a alimentação de entrada, verifique se ele soará um alarme.
 - a cada 30 segundos. Para testar a tecla mute, com um toque rápido no botão lig/desl deverá desativar o alarme, aguarde até que durante 1 minuto o alarme não acione, dê um toque novamente e ele retornará. Conecte o equipamento à rede.
- 24. Desligue o no break;
- 25. Para simular falha no auto teste, com o equipamento desligado, desconecte-o da rede, retire os cabos de bateria, desconecte o cabo do inversor (CN6 e CN8) isoleos, conecte o cabos da bateria e ligue o equipamento a rede nominal de entrada;
- **26.** Ligue o equipamento, deverá soar um "bip contínuo" e não habilitará a saída, desconecte-o da rede de entrada, o alarme desligará;
- 27. Conecte os cabos do inversor (CN6 e CN8), ligue o equipamento em rede nominal;

14.Teste do Transformador Power Guard 1400VA

TESTE DE TENSÃO (100% DAS PEÇAS)

Aplicar 113V entre A e C e ler entre:

A e B = 104V

A e D = 121V

E e F=104V

MeN = 14V

O e P = 14V

KeL=25V

J e I = 25 V

GeH = 15V

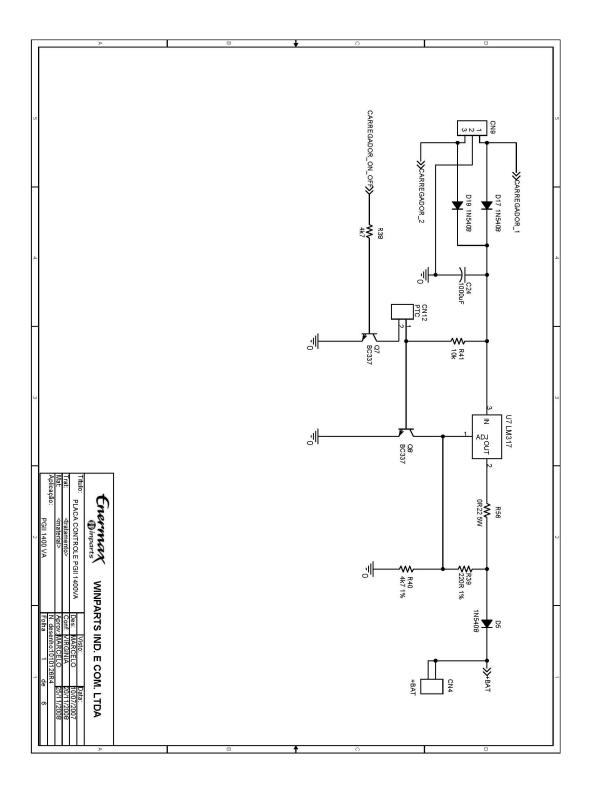
TESTE DE POLARIDADE (100% DAS PEÇAS)

Unir D com E, F com N, O com J e K com H, aplicar 113V entre A e C, ler 132V entre A e G (tolerância de ± 5 %);

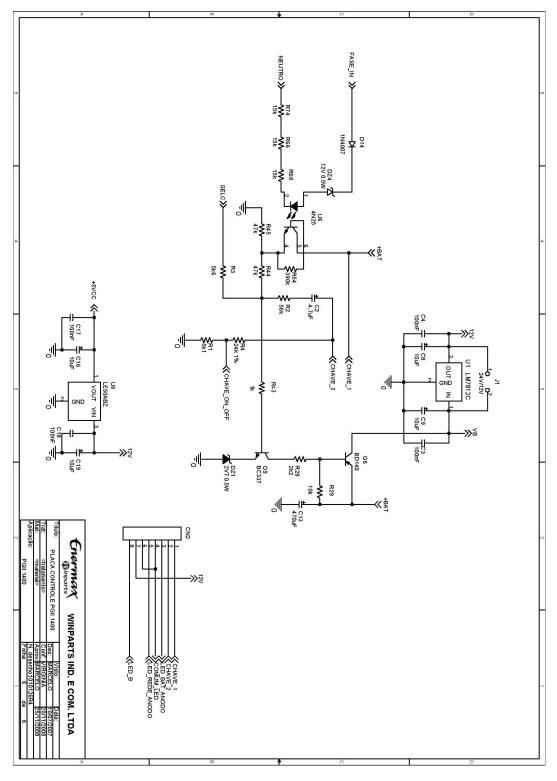
15. Alterações nas placas do PG 1400VA

Placas PG 1400VA - 11.02.151 - PCI 10.10.126R4

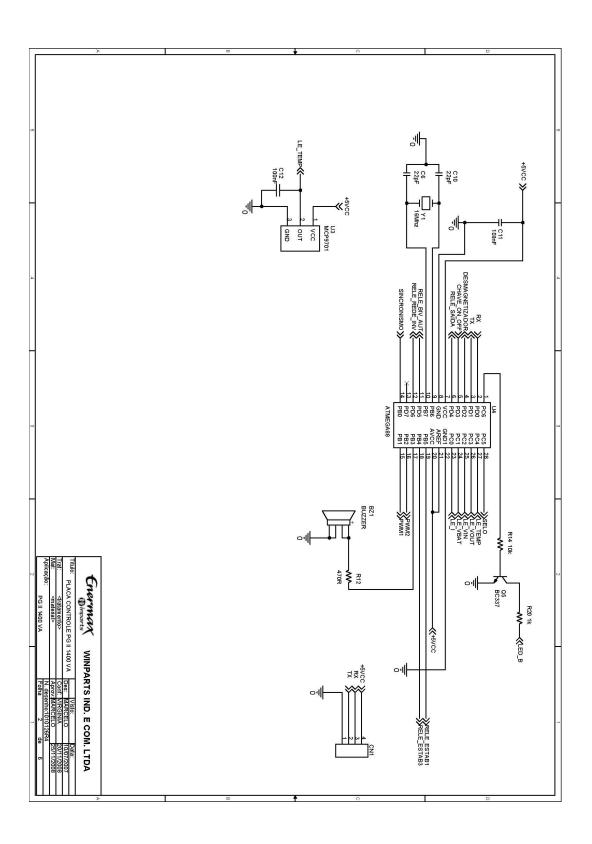
- 08/10/2008 Alterado valor dos diodos D16 e D18 de 1N4007 para RL207;
- 08/10/2008 Alterado resistores R74,R66 e R68 de 15K/CR25 para 15K/1W;

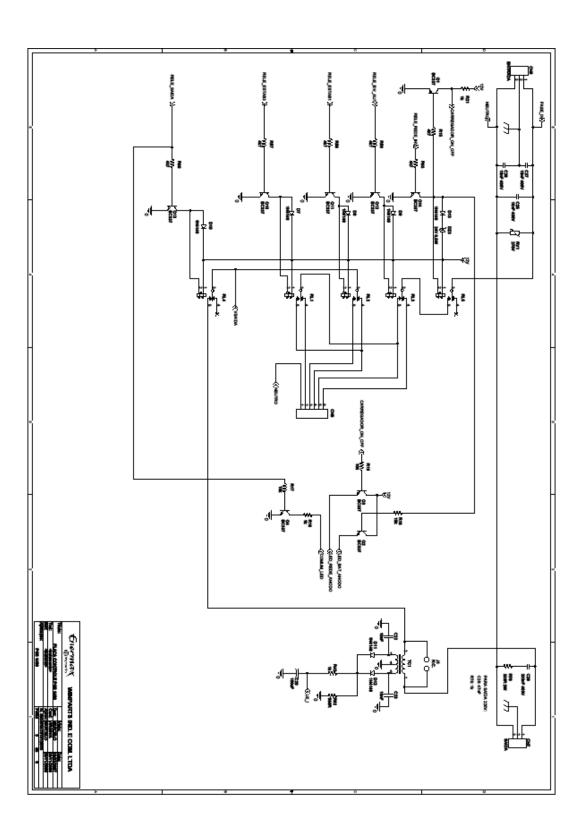

16. Variações de componentes entre os modelos Power Guard 1400

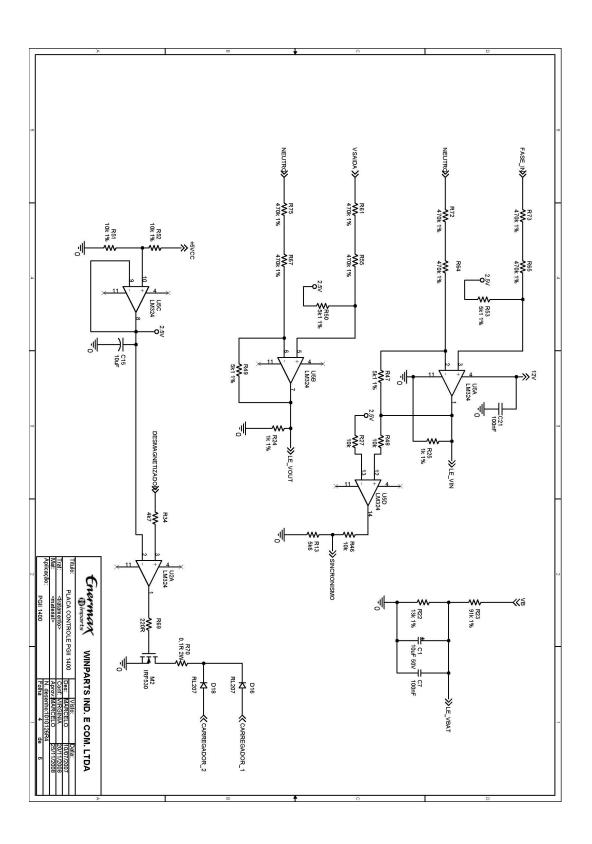
Variações entre os modelos		
Power Guard 1400 bi(115V)	Power Guard 1400 mono(115V)	P. Guard 1400 mono(220V)
RL3 12V/10A	NC	NC
D9 1N4148	NC	NC
Q12 - BC337	NC	NC
R59-4k7	NC	NC
R76-330R/2W	R76-330R/2W	R76-1K/2W
C28 -330nF/400V	C28 -330nF/400V	C28 -47nF/400V
RV1- S10K/275V	RV1- S10K/175V	RV1- S10K/275V

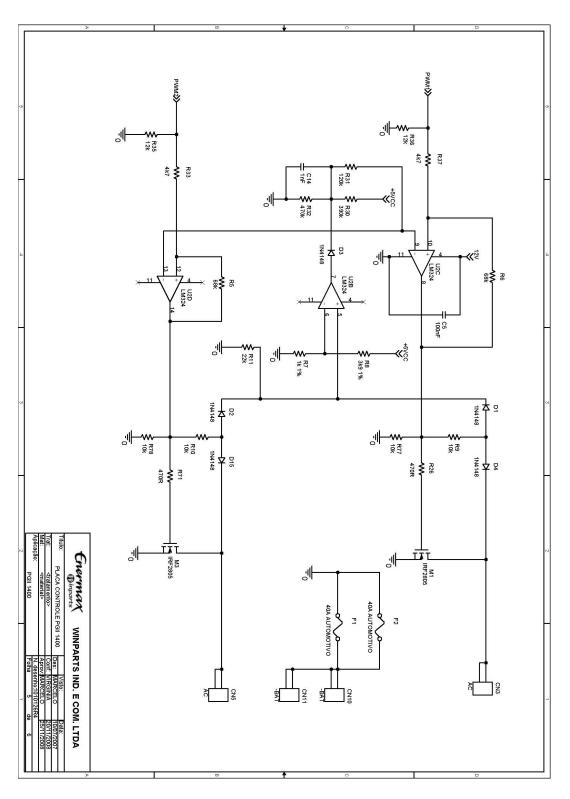

17. Variações de componentes entre os modelos Power Guard.

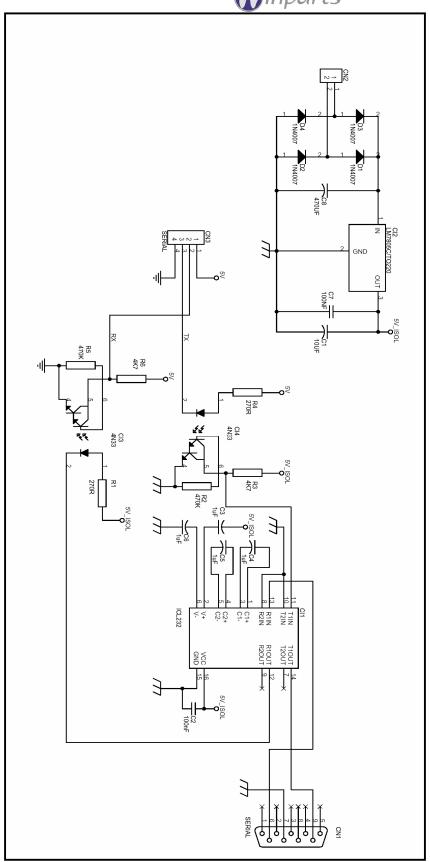
Power Guard 1400va	Power Guard 700va
R28 – 2K2/CR25	R28 – 1K/CR25
R44 – 47K/CR25	R44 – 10K/CR25
R2 – 56K/CR25	R2 – 22K/CR25
R29 - 10K/CR25	R29 – 4K7/CR25
R40 – 4K7/MR25	R40 – 2K37/MR25
R23 – 91K/MR25	R23 – 33K/MR25
R22 – 13K/MR25	R22 – 11K/MR25
R4 – 24K/MR25	R04 – 10K/CR25
C8 - 10µF/50V	C8 - 47µF/25V
C2 – 4,7µF/50V	C2 - 1µF/50V

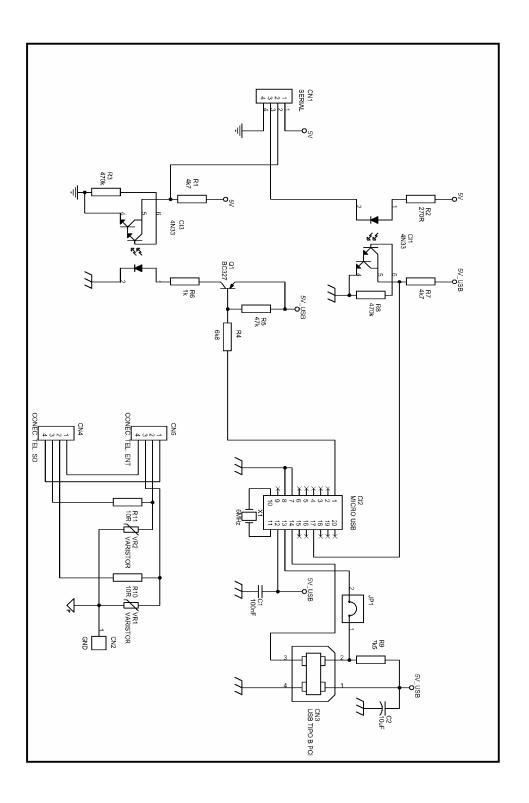












Anotações:

-	

	\neg
·	

٦
٦
٦
٦
7
┪
-
┪
\dashv
-
4
_
_
_
٦
٦
٦
7
┪
┪
┥
\dashv
-
4
_
_
_