# FAIRCHILD

SEMICONDUCTOR TM

# CD4029BC Presettable Binary/Decade Up/Down Counter

# **General Description**

The CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade input. When binary/decade is at logical "1", the counter counts in binary, otherwise it counts in decade. Similarly, the counter counts up when the up/down input is at logical "1" and vice versa.

A logical "1" preset enable signal allows information at the "jam" inputs to preset the counter to any state asynchronously with the clock. The counter is advanced one count at the positive-going edge of the clock if the carry in and preset enable inputs are at logical "0". Advancement is inhibited when either or both of these two inputs is at logical "1". The carry out signal is normally at logical "1" state and goes to logical "0" state when the counter reaches its maximum count in the "up" mode or the minimum count in the "down" mode provided the carry input is at logical "0" state.

October 1987

Revised January 1999

All inputs are protected against static discharge by diode clamps to both  $V_{DD}$  and  $V_{SS}.$ 

#### Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V<sub>DD</sub> (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L
- or 1 driving 74LS
- Parallel jam inputs
- Binary or BCD decade up/down counting

# Ordering Code:

| Order Number | Package Number | Package Description                                                             |
|--------------|----------------|---------------------------------------------------------------------------------|
| CD4029BCWM   | M16B           | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide body |
| CD4029BCSJ   | M16D           | 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                   |
| CD4029BCN    | N16E           | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide          |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

### **Connection Diagram**



#### Pin Assignments for DIP, SOIC and SOP

© 1999 Fairchild Semiconductor Corporation DS005960.prf



### Absolute Maximum Ratings(Note 1)

(Note 2)

### Recommended Operating Conditions (Note 2)

| DC Supply Voltage (V <sub>DD</sub> ) | –0.5V to +18 V <sub>DC</sub>       |
|--------------------------------------|------------------------------------|
| Input Voltage (V <sub>IN</sub> )     | $-0.5V$ to $V_{DD}$ + 0.5 $V_{DC}$ |
| Storage Temperature Range $(T_S)$    | -65°C to +150°C                    |
| Power Dissipation (P <sub>D</sub> )  |                                    |
| Dual-In-Line                         | 700 mW                             |
| Small Outline                        | 500 mW                             |
| Lead Temperature (T <sub>L</sub> )   |                                    |
| (Soldering, 10 seconds)              | 260°C                              |

DC Supply Voltage (V<sub>DD</sub>)

C Input Voltage (V<sub>IN</sub>)

3V to 15 V<sub>DC</sub> 0V to V<sub>DD</sub> V<sub>DC</sub>

C Operating Temperature Range (T<sub>A</sub>) –

-40°C to +85°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: V<sub>SS</sub> = 0V unless otherwise specified.

# DC Electrical Characteristics (Note 2)

| Cumb c l        | Parameter                | Conditions                                     | <b>−40°C</b> |      | + <b>25°C</b> |                   |      | +85°C |      | Units |
|-----------------|--------------------------|------------------------------------------------|--------------|------|---------------|-------------------|------|-------|------|-------|
| Symbol          |                          | Conditions                                     | Min          | Max  | Min           | Тур               | Max  | Min   | Мах  | Units |
| I <sub>DD</sub> | Quiescent Device Current | $V_{DD} = 5V$                                  |              | 20   |               |                   | 20   |       | 150  | μA    |
|                 |                          | $V_{DD} = 10V$                                 |              | 40   |               |                   | 40   |       | 300  | μA    |
|                 |                          | $V_{DD} = 15V$                                 |              | 80   |               |                   | 80   |       | 600  | μA    |
| V <sub>OL</sub> | LOW Level                | I <sub>O</sub>   < 1 μA                        |              |      |               |                   |      |       |      |       |
|                 | Output Voltage           | $V_{DD} = 5V$                                  |              | 0.05 |               | 0                 | 0.05 |       | 0.05 | V     |
|                 |                          | $V_{DD} = 10V$                                 |              | 0.05 |               | 0                 | 0.05 |       | 0.05 | V     |
|                 |                          | $V_{DD} = 15V$                                 |              | 0.05 |               | 0                 | 0.05 |       | 0.05 | V     |
| V <sub>OH</sub> | HIGH Level               | I <sub>O</sub>   < 1 μA                        |              |      |               |                   |      |       |      |       |
|                 | Output Voltage           | $V_{DD} = 5V$                                  | 4.95         |      | 4.95          | 5                 |      | 4.95  |      | V     |
|                 |                          | $V_{DD} = 10V$                                 | 9.95         |      | 9.95          | 10                |      | 9.95  |      | V     |
|                 |                          | $V_{DD} = 15V$                                 | 14.95        |      | 14.95         | 15                |      | 14.95 |      | V     |
| V <sub>IL</sub> | LOW Level                | $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$   |              | 1.5  |               |                   | 1.5  |       | 1.5  | V     |
|                 | Input Voltage            | $V_{DD} = 10V$ , $V_O = 1V$ or $9V$            |              | 3.0  |               |                   | 3.0  |       | 3.0  | V     |
|                 |                          | $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ |              | 4.0  |               |                   | 4.0  |       | 4.0  | V     |
| V <sub>IH</sub> | HIGH Level               | $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$   | 3.5          |      | 3.5           |                   |      | 3.5   |      | V     |
|                 | Input Voltage            | $V_{DD} = 10V$ , $V_O = 1V$ or $9V$            | 7.0          |      | 7.0           |                   |      | 7.0   |      | V     |
|                 |                          | $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ | 11.0         |      | 11.0          |                   |      | 11.0  |      | V     |
| I <sub>OL</sub> | LOW Level Output         | $V_{DD} = 5V, V_{O} = 0.4V$                    | 0.52         |      | 0.44          | 0.88              |      | 0.36  |      | mA    |
|                 | Current (Note 3)         | $V_{DD} = 10V, V_{O} = 0.5V$                   | 1.3          |      | 1.1           | 2.25              |      | 0.9   |      | mA    |
|                 |                          | $V_{DD} = 15V, V_{O} = 1.5V$                   | 3.6          |      | 3.0           | 8.8               |      | 2.4   |      | mA    |
| I <sub>OH</sub> | HIGH Level Output        | $V_{DD} = 5V, V_{O} = 4.6V$                    | -0.52        |      | -0.44         | -0.88             |      | -0.36 |      | mA    |
|                 | Current (Note 3)         | $V_{DD} = 10V, V_{O} = 9.5V$                   | -1.3         |      | -1.1          | -2.25             |      | -0.9  |      | mA    |
|                 |                          | $V_{DD} = 15V, V_{O} = 13.5V$                  | -3.6         |      | -3.0          | -8.8              |      | -2.4  |      | mA    |
| I <sub>IN</sub> | Input Current            | $V_{DD} = 15V, V_{IN} = 0V$                    |              | -0.3 |               | -10 <sup>-5</sup> | -0.3 |       | -1.0 | μA    |
|                 |                          | $V_{DD} = 15V, V_{IN} = 15V$                   |              | 0.3  |               | 10 <sup>-5</sup>  | 0.3  |       | 1.0  | μΑ    |

Note 3:  $I_{OH}$  and  $I_{OL}$  are tested one output at a time.

| C |
|---|
| ш |
| ດ |
| 2 |
| 0 |
| 4 |
| Δ |
| C |
|   |

# AC Electrical Characteristics (Note 4)

| Symbol                               | Parameter                     | Conditions                       | Min | Тур       | Max        | Units |
|--------------------------------------|-------------------------------|----------------------------------|-----|-----------|------------|-------|
| CLOCKED OPER                         | ATION                         |                                  |     |           |            |       |
| t <sub>PHL</sub> or t <sub>PLH</sub> | Propagation Delay Time        | $V_{DD} = 5V$                    |     | 200       | 400        | ns    |
|                                      | to Q Outputs                  | $V_{DD} = 10V$                   |     | 85        | 170        | ns    |
|                                      |                               | $V_{DD} = 15V$                   |     | 70        | 140        | ns    |
| t <sub>PHL</sub> or t <sub>PLH</sub> | Propagation Delay Time        | $V_{DD} = 5V$                    |     | 320       | 640        | ns    |
|                                      | to Carry Output               | $V_{DD} = 10V$                   |     | 135       | 270        | ns    |
|                                      | to outry output               | $V_{DD} = 15V$<br>$V_{DD} = 15V$ |     | 110       | 220        | ns    |
| tau or tau                           | Propagation Delay Time        | $C_L = 15 \text{ pF}$            |     | 110       | 220        | 113   |
| t <sub>PHL</sub> or t <sub>PLH</sub> | to Carry Output               | $V_{DD} = 5V$                    |     | 285       | 570        | ns    |
|                                      | to Carry Output               |                                  |     | 120       | 240        |       |
|                                      |                               | $V_{DD} = 10V$                   |     |           |            | ns    |
|                                      | Transitian Time (0            | $V_{DD} = 15V$                   |     | 95        | 190        | ns    |
| t <sub>THL</sub> or t <sub>TLH</sub> | Transition Time/Q             | $V_{DD} = 5V$                    |     | 100       | 200        | ns    |
|                                      | or Carry Output               | $V_{DD} = 10V$                   |     | 50        | 100        | ns    |
|                                      |                               | V <sub>DD</sub> = 15V            |     | 40        | 80         | ns    |
| t <sub>WH</sub> or t <sub>WL</sub>   | Minimum Clock                 | $V_{DD} = 5V$                    |     | 160       | 320        | ns    |
|                                      | Pulse Width                   | $V_{DD} = 10V$                   |     | 70        | 135        | ns    |
|                                      |                               | $V_{DD} = 15V$                   |     | 55        | 110        | ns    |
| t <sub>rCL</sub> or t <sub>fCL</sub> | Maximum Clock Rise            | $V_{DD} = 5V$                    | 15  |           |            | μs    |
|                                      | and Fall Time                 | $V_{DD} = 10V$                   | 10  |           |            | μs    |
|                                      |                               | $V_{DD} = 15V$                   | 5   |           |            | μs    |
| t <sub>SU</sub>                      | Minimum Set-Up Time           | $V_{DD} = 5V$                    |     | 180       | 360        | ns    |
|                                      |                               | $V_{DD} = 10V$                   |     | 70        | 140        | ns    |
|                                      |                               | $V_{DD} = 15V$                   |     | 55        | 110        | ns    |
| f <sub>CL</sub>                      | Maximum Clock Frequency       | $V_{DD} = 5V$                    | 1.5 | 3.1       |            | MHz   |
|                                      |                               | $V_{DD} = 10V$                   | 3.7 | 7.4       |            | MHz   |
|                                      |                               | $V_{DD} = 15V$                   | 4.5 | 9         |            | MHz   |
| CIN                                  | Average Input Capacitance     | Any Input                        |     | 5         | 7.5        | pF    |
| C <sub>PD</sub>                      | Power Dissipation Capacitance | Per Package (Note 5)             |     | 65        |            | pF    |
| PRESET ENABLE                        | E OPERATION                   |                                  |     |           | 1          |       |
| t <sub>PHL</sub> or t <sub>PLH</sub> | Propagation Delay Time        | $V_{DD} = 5V$                    |     | 285       | 570        | ns    |
|                                      | to Q output                   | $V_{DD} = 10V$                   |     | 115       | 230        | ns    |
|                                      |                               | V <sub>DD</sub> = 15V            |     | 95        | 195        | ns    |
| t <sub>PHL</sub> or t <sub>PLH</sub> | Propagation Delay Time        | $V_{DD} = 5V$                    |     | 400       | 800        | ns    |
| -PAL                                 | to Carry Output               | $V_{DD} = 10V$                   |     | 165       | 330        | ns    |
|                                      |                               | $V_{DD} = 15V$                   |     | 135       | 260        | ns    |
| t                                    | Minimum Preset Enable         | $V_{DD} = 5V$                    |     | 80        | 160        | ns    |
| t <sub>WH</sub>                      | Pulse Width                   | $V_{DD} = 3V$<br>$V_{DD} = 10V$  |     | 30        | 60         | ns    |
|                                      |                               | $V_{DD} = 10V$<br>$V_{DD} = 15V$ |     | 25        | 50         | ns    |
| t                                    | Minimum Preset Enable         | $V_{DD} = 15V$<br>$V_{DD} = 5V$  |     | 25<br>150 | 300        | ns    |
| t <sub>REM</sub>                     | Removal Time                  | $V_{DD} = 5V$<br>$V_{DD} = 10V$  |     | 60        | 300<br>120 |       |
|                                      |                               |                                  |     |           |            | ns    |
| CARRY INPUT O                        |                               | $V_{DD} = 15V$                   |     | 50        | 100        | ns    |
|                                      |                               | V _ <b>F</b> V                   |     | 205       | E00        |       |
| t <sub>PHL</sub> or t <sub>PLH</sub> | Propagation Delay Time        | $V_{DD} = 5V$                    |     | 265       | 530        | ns    |
|                                      | to Carry Output               | $V_{DD} = 10V$                   |     | 110       | 220        | ns    |
|                                      |                               | V <sub>DD</sub> = 15V            |     | 90        | 180        | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub>  | Propagation Delay Time        | C <sub>L</sub> = 15 pF           |     |           |            |       |
|                                      | to Carry Output               | $V_{DD} = 5V$                    |     | 200       | 400        | ns    |
|                                      |                               | $V_{DD} = 10V$                   |     | 85        | 170        | ns    |
|                                      |                               | $V_{DD} = 15V$                   |     | 70        | 140        | ns    |

Note 4: \*AC Parameters are guaranteed by DC correlated testing.

Note 5: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.







CD4029BC



Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.