

Absolute Maximum (Note 2)	atings(Note 1)	Recommended Operating Conditions (Note 2)
DC Supply Voltage (V_{DD})	-0.5 V to $+18 \mathrm{~V}_{\mathrm{DC}}$	DC Supply Voltage (V_{DD}) 3 V to $15 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage ($\mathrm{V}_{\text {IN }}$)	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$	Input Voltage (V_{IN}) $\quad 0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature Range (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) Dual-In-Line	700 mW	Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be oper-
Small Outline	500 mW	ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Lead Temperature (T_{L}) (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	conditions tor actual device operation. Note 2: $\mathrm{V}_{\text {Ss }}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			${ }^{+85}{ }^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\overline{\mathrm{ID}}$	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$			$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
IOL	LOW Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \end{gathered}$		$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\stackrel{\text { IOH }}{ }$	HIGH Level Output Current (Note 3)	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.52 \\ -1.3 \\ -3.6 \\ \hline \end{gathered}$		$\begin{gathered} \hline-0.44 \\ -1.1 \\ -3.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.88 \\ & -2.25 \\ & -8.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-0.36 \\ & -0.9 \\ & -2.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{IN}	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline-0.3 \\ 0.3 \end{gathered}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{gathered} \hline-0.3 \\ 0.3 \end{gathered}$		$\begin{gathered} \hline-1.0 \\ 1.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CLOCKED OPERATION						
$\mathrm{t}_{\text {PHL }}$ or tPLH	Propagation Delay Time to Q Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 85 \\ 70 \end{gathered}$	$\begin{aligned} & 400 \\ & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time to Carry Output	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 320 \\ & 135 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 640 \\ & 270 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time to Carry Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 285 \\ 120 \\ 95 \\ \hline \end{gathered}$	$\begin{array}{r} 570 \\ 240 \\ 190 \\ \hline \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {THL }}$ or $\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & \text { Transition Time/Q } \\ & \text { or Carry Output } \end{aligned}$	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
t_{WH} or $\mathrm{twL}^{\text {L }}$	Minimum Clock Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 160 \\ & 70 \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 320 \\ & 135 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{trCL}^{\text {or } \mathrm{t}_{\mathrm{f} C L}}$	Maximum Clock Rise and Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 15 \\ 10 \\ 5 \end{gathered}$			$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~s} \end{aligned}$
$\mathrm{t}_{\text {SU }}$	Minimum Set-Up Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 180 \\ & 70 \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 360 \\ & 140 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\overline{f_{C L}}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.7 \\ & 4.5 \end{aligned}$	$\begin{gathered} \hline 3.1 \\ 7.4 \\ 9 \end{gathered}$		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance	Any Input		5	7.5	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	Per Package (Note 5)		65		pF
PRESET ENABLE OPERATION						
$\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time to Q output	$\begin{aligned} & \mathrm{V} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 285 \\ 115 \\ 95 \end{gathered}$	$\begin{aligned} & 570 \\ & 230 \\ & 195 \end{aligned}$	ns ns ns
$\mathrm{t}_{\text {PHL }}$ or tPLH	Propagation Delay Time to Carry Output	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 400 \\ & 165 \\ & 135 \end{aligned}$	$\begin{aligned} & 800 \\ & 330 \\ & 260 \end{aligned}$	ns ns ns
$\mathrm{t}_{\text {WH }}$	Minimum Preset Enable Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 80 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 160 \\ 60 \\ 50 \end{gathered}$	ns ns ns
$\overline{\text { trem }}$	Minimum Preset Enable Removal Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
CARRY INPUT OPERATION						
$\mathrm{t}_{\text {PHL }}$ or tPLH	Propagation Delay Time to Carry Output	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 265 \\ 110 \\ 90 \end{gathered}$	$\begin{aligned} & 530 \\ & 220 \\ & 180 \end{aligned}$	ns ns ns
	Propagation Delay Time to Carry Output	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 85 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & 400 \\ & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Note 4: *AC Parameters are guaranteed by DC correlated testing. Note 5: $\mathrm{C}_{\text {PD }}$ determines the no load AC power consumption of any CMOS device. For complete explanation, see 74 C Family Characteristics application note, AN-90.						

www.fairchildsemi.com

Logic Waveforms

Switching Time Waveforms

Cascading Packages

Carry out lines at the 2nd or later stages may have a negative-going spike due to differential internal delays. These spikes do not affect counter operation, but if the carry out is used to trigger external circuitry the carry out should be gated with the clock.

CD4029BC Presettable Binary/Decade Up/Down Counter
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^0]
[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patert licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

